File size: 1,789 Bytes
690ada3 42b03f9 690ada3 3a834c5 dc979d2 3a834c5 20347ea 48e5876 20347ea 48e5876 20347ea 690ada3 48e5876 690ada3 20347ea 690ada3 fd96822 690ada3 20347ea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
import numpy as np
from skimage.metrics import structural_similarity as ssim
import gradio as gr
import cv2
# Function to calculate SSIM between two images
def calculate_similarity(img1, img2):
if len(img1.shape) == 2:
img1 = cv2.cvtColor(img1, cv2.COLOR_GRAY2RGB)
if len(img2.shape) == 2:
img2 = cv2.cvtColor(img2, cv2.COLOR_GRAY2RGB)
return ssim(img1, img2, win_size=3)
# Function to compute similarity scores for all images
def compute_similarity(target_image, image_list):
scores = []
target_image_resized = cv2.resize(target_image, (target_image.shape[1], target_image.shape[0]))
for image in image_list:
image_resized = cv2.resize(image, (target_image.shape[1], target_image.shape[0]))
similarity_score = calculate_similarity(target_image_resized, image_resized)
scores.append(similarity_score)
return scores
# Function to handle the Gradio interface
def image_similarity(target_image, image_list):
target_image = target_image.astype(np.uint8)
image_list = [image.astype(np.uint8) for image in image_list]
scores = compute_similarity(target_image, image_list)
results = list(zip(image_list, scores))
results.sort(key=lambda x: x[1], reverse=True) # Sort by similarity score
formatted_results = [(str(image.tolist()), f"{score:.4f}") for image, score in results]
return formatted_results
# Prepare Gradio interface
iface = gr.Interface(
fn=image_similarity,
inputs=[
gr.inputs.Image(type="numpy", label="Target Image"),
gr.inputs.Image(type="numpy", label="Image List")
],
outputs="text",
title="Image Similarity Calculator",
description="Upload an image and a list of images. Get similarity scores."
)
# Launch the interface
iface.launch() |