omar87 commited on
Commit
0d2d614
·
1 Parent(s): e5f2611

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +57 -46
app.py CHANGED
@@ -1,59 +1,70 @@
1
  import numpy as np
2
- from skimage.metrics import structural_similarity as ssim
3
  import gradio as gr
 
 
4
  import cv2
5
-
6
- # Function to remove text from image (placeholder implementation)
7
- def remove_text(image):
8
- # Placeholder implementation
9
- # Implement your own text removal algorithm here
10
- processed_image = image.copy()
11
- # Your text removal logic goes here
12
- return processed_image
13
 
14
  # Function to calculate SSIM between two images
15
- def calculate_similarity(img1, img2):
16
- if len(img1.shape) == 2:
17
- img1 = cv2.cvtColor(img1, cv2.COLOR_GRAY2RGB)
18
- if len(img2.shape) == 2:
19
- img2 = cv2.cvtColor(img2, cv2.COLOR_GRAY2RGB)
20
- max_height = max(img1.shape[0], img2.shape[0])
21
- max_width = max(img1.shape[1], img2.shape[1])
22
- img1_resized = cv2.resize(img1, (max_width, max_height))
23
- img2_resized = cv2.resize(img2, (max_width, max_height))
24
-
25
- # Calculate similarity score based on SSIM
26
- ssim_score = ssim(img1_resized, img2_resized, win_size=3, multichannel=True)
27
-
28
- return ssim_score
29
-
30
- # Rest of the code remains the same
31
- def image_similarity(img1, img2):
32
- img1 = img1.astype(np.uint8)
33
- img2 = img2.astype(np.uint8)
34
-
35
- # Remove text from images
36
- img1_processed = remove_text(img1)
37
- img2_processed = remove_text(img2)
38
-
39
- # Calculate similarity score based on SSIM
40
- ssim_score = calculate_similarity(img1, img2)
41
-
42
- # Calculate similarity score after text removal
43
- additional_score = calculate_similarity(img1_processed, img2_processed)
44
-
45
- result = f"SSIM Score: {ssim_score:.4f}\nAdditional Score (after text removal): {additional_score:.4f}"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46
  return result
47
 
48
  iface = gr.Interface(
49
- fn=image_similarity,
50
  inputs=[
51
- gr.inputs.Image(type="numpy", label="Image 1"),
52
- gr.inputs.Image(type="numpy", label="Image 2")
53
  ],
54
  outputs="text",
55
- title="Image Similarity Calculator",
56
- description="Upload two images to compute their similarity."
57
  )
58
 
59
- iface.launch()
 
1
  import numpy as np
 
2
  import gradio as gr
3
+ from PIL import Image
4
+ from skimage.metrics import structural_similarity as ssim
5
  import cv2
6
+ import pytesseract
7
+ from difflib import SequenceMatcher
 
 
 
 
 
 
8
 
9
  # Function to calculate SSIM between two images
10
+ def calculate_ssim(img1, img2):
11
+ img1_gray = cv2.cvtColor(img1, cv2.COLOR_RGB2GRAY)
12
+ img2_gray = cv2.cvtColor(img2, cv2.COLOR_RGB2GRAY)
13
+ return ssim(img1_gray, img2_gray)
14
+
15
+ # Function to compare trademarks based on text similarity
16
+ def compare_text(trademark1, trademark2):
17
+ text1 = pytesseract.image_to_string(trademark1).lower()
18
+ text2 = pytesseract.image_to_string(trademark2).lower()
19
+ similarity_ratio = SequenceMatcher(None, text1, text2).ratio()
20
+ return similarity_ratio
21
+
22
+ # Function to compare trademarks based on color similarity
23
+ def compare_colors(trademark1, trademark2):
24
+ trademark1 = trademark1.convert("RGB")
25
+ trademark2 = trademark2.convert("RGB")
26
+ colors1 = trademark1.getcolors(trademark1.size[0] * trademark1.size[1])
27
+ colors2 = trademark2.getcolors(trademark2.size[0] * trademark2.size[1])
28
+ color_vector1 = np.zeros(3)
29
+ color_vector2 = np.zeros(3)
30
+ for count, color in colors1:
31
+ color_vector1 += np.array(color) * count
32
+ for count, color in colors2:
33
+ color_vector2 += np.array(color) * count
34
+ color_vector1 /= trademark1.size[0] * trademark1.size[1]
35
+ color_vector2 /= trademark2.size[0] * trademark2.size[1]
36
+ color_similarity = 1 - np.linalg.norm(color_vector1 - color_vector2)
37
+ return color_similarity
38
+
39
+ # Function to compare trademarks based on multiple aspects
40
+ def compare_trademarks(trademark1, trademark2):
41
+ ssim_score = calculate_ssim(np.array(trademark1), np.array(trademark2))
42
+ text_similarity = compare_text(trademark1, trademark2)
43
+ color_similarity = compare_colors(trademark1, trademark2)
44
+
45
+ # Adjust weights based on the importance of each aspect
46
+ ssim_weight = 0.6
47
+ text_weight = 0.2
48
+ color_weight = 0.2
49
+
50
+ overall_similarity = (ssim_weight * ssim_score) + (text_weight * text_similarity) + (color_weight * color_similarity)
51
+ return overall_similarity
52
+
53
+ # Function to perform trademark conflict prevention
54
+ def prevent_trademark_conflict(trademark1, trademark2):
55
+ similarity_score = compare_trademarks(trademark1, trademark2)
56
+ result = f"Trademark Similarity Score: {similarity_score:.4f}"
57
  return result
58
 
59
  iface = gr.Interface(
60
+ fn=prevent_trademark_conflict,
61
  inputs=[
62
+ gr.inputs.Image(type="pil", label="Trademark Image 1"),
63
+ gr.inputs.Image(type="pil", label="Trademark Image 2")
64
  ],
65
  outputs="text",
66
+ title="Trademark Conflict Prevention",
67
+ description="Upload two trademark images to prevent conflict."
68
  )
69
 
70
+ iface.launch(share=True)