omar87 commited on
Commit
4911012
·
1 Parent(s): 2550810

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +60 -47
app.py CHANGED
@@ -2,65 +2,78 @@ import gradio as gr
2
  import cv2
3
  import numpy as np
4
  from skimage.metrics import structural_similarity as ssim
5
- from PIL import Image
6
- import pytesseract
7
- import matplotlib.pyplot as plt
 
 
 
 
 
8
 
9
- # Function to calculate SSIM between two images
10
  def calculate_ssim(img1, img2):
11
- img1_gray = img1.convert("L")
12
- img2_gray = img2.convert("L")
13
- img1_resized = img1_gray.resize((256, 256))
14
- img2_resized = img2_gray.resize((256, 256))
15
- return ssim(np.array(img1_resized), np.array(img2_resized))
16
-
17
- # Function to extract text from an image
18
- def extract_text(image):
19
- text = pytesseract.image_to_string(image)
20
- return text
21
-
22
- # Function to calculate color difference between two images
23
- def calculate_color_difference(img1, img2):
24
- hist1 = cv2.calcHist([np.array(img1)], [0, 1, 2], None, [8, 8, 8], [0, 256, 0, 256, 0, 256])
25
- hist2 = cv2.calcHist([np.array(img2)], [0, 1, 2], None, [8, 8, 8], [0, 256, 0, 256, 0, 256])
26
- return cv2.compareHist(hist1, hist2, cv2.HISTCMP_CHISQR)
27
-
28
- # Function to compare two trademarks
 
 
 
 
 
 
 
 
 
 
 
 
29
  def compare_trademarks(trademark1, trademark2):
30
- ssim_score = calculate_ssim(trademark1, trademark2)
31
- text1 = extract_text(trademark1)
32
- text2 = extract_text(trademark2)
 
 
 
 
 
33
  text_similarity = calculate_text_similarity(text1, text2)
34
- color_difference = calculate_color_difference(trademark1, trademark2)
35
- return ssim_score, text_similarity, color_difference
36
 
37
- # Function to calculate text similarity ratio
38
- def calculate_text_similarity(text1, text2):
39
- if text1 == "" or text2 == "":
40
- return 0.0
41
- text1 = text1.lower()
42
- text2 = text2.lower()
43
- intersection = len(set(text1.split()) & set(text2.split()))
44
- union = len(set(text1.split()) | set(text2.split()))
45
- return intersection / union
46
-
47
- # Function to handle the Gradio interface
48
  def prevent_trademark_conflict(trademark1, trademark2):
49
- ssim_score, text_similarity, color_difference = compare_trademarks(trademark1, trademark2)
50
- result = f"SSIM Score: {ssim_score:.2f}\nText Similarity: {text_similarity:.2f}\nColor Difference: {color_difference:.2f}"
51
- return result
52
 
53
- # Prepare Gradio interface
54
- iface = gr.Interface(
55
  fn=prevent_trademark_conflict,
56
  inputs=[
57
  gr.inputs.Image(type="pil", label="Trademark Image 1"),
58
- gr.inputs.Image(type="pil", label="Trademark Image 2")
59
  ],
60
  outputs="text",
61
- title="Trademark Similarity",
62
- description="Compare two trademarks to check for similarity."
63
  )
64
 
65
  # Launch the interface
66
- iface.launch()
 
2
  import cv2
3
  import numpy as np
4
  from skimage.metrics import structural_similarity as ssim
5
+ from transformers import BertForSequenceClassification, BertTokenizer
6
+ import torch
7
+
8
+
9
+ # Load pre-trained model and tokenizer
10
+ model = BertForSequenceClassification.from_pretrained("bert-base-uncased")
11
+ tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
12
+
13
 
 
14
  def calculate_ssim(img1, img2):
15
+ img1_gray = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY)
16
+ img2_gray = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)
17
+ return ssim(img1_gray, img2_gray)
18
+
19
+
20
+ def calculate_text_similarity(text1, text2):
21
+ encoded_text1 = tokenizer(text1, truncation=True, padding=True, return_tensors="pt")
22
+ encoded_text2 = tokenizer(text2, truncation=True, padding=True, return_tensors="pt")
23
+
24
+ with torch.no_grad():
25
+ outputs_text1 = model(**encoded_text1)
26
+ outputs_text2 = model(**encoded_text2)
27
+
28
+ embeddings_text1 = outputs_text1.last_hidden_state.squeeze(0)
29
+ embeddings_text2 = outputs_text2.last_hidden_state.squeeze(0)
30
+
31
+ text_similarity = ssim(embeddings_text1.numpy(), embeddings_text2.numpy())
32
+
33
+ return text_similarity
34
+
35
+
36
+ def calculate_color_similarity(img1, img2):
37
+ img1_lab = cv2.cvtColor(img1, cv2.COLOR_BGR2Lab)
38
+ img2_lab = cv2.cvtColor(img2, cv2.COLOR_BGR2Lab)
39
+
40
+ color_similarity = ssim(img1_lab, img2_lab, multichannel=True)
41
+
42
+ return color_similarity
43
+
44
+
45
  def compare_trademarks(trademark1, trademark2):
46
+ img1 = cv2.imread(trademark1)
47
+ img2 = cv2.imread(trademark2)
48
+
49
+ ssim_score = calculate_ssim(img1, img2)
50
+
51
+ text1 = "Trademark text 1"
52
+ text2 = "Trademark text 2"
53
+
54
  text_similarity = calculate_text_similarity(text1, text2)
 
 
55
 
56
+ color_similarity = calculate_color_similarity(img1, img2)
57
+
58
+ return ssim_score, text_similarity, color_similarity
59
+
60
+
 
 
 
 
 
 
61
  def prevent_trademark_conflict(trademark1, trademark2):
62
+ similarity_scores = compare_trademarks(trademark1, trademark2)
63
+ return similarity_scores
64
+
65
 
66
+ # Interface
67
+ trademark_comparison_interface = gr.Interface(
68
  fn=prevent_trademark_conflict,
69
  inputs=[
70
  gr.inputs.Image(type="pil", label="Trademark Image 1"),
71
+ gr.inputs.Image(type="pil", label="Trademark Image 2"),
72
  ],
73
  outputs="text",
74
+ title="Trademark Comparison",
75
+ description="Compare two trademarks based on SSIM, text similarity, and color similarity.",
76
  )
77
 
78
  # Launch the interface
79
+ trademark_comparison_interface.launch()