omar87 commited on
Commit
b12bd2d
·
1 Parent(s): 7858a05

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +17 -51
app.py CHANGED
@@ -1,71 +1,37 @@
1
- from PIL import Image
2
- from difflib import SequenceMatcher
3
- from skimage.metrics import structural_similarity as ssim
4
  import gradio as gr
5
- import pytesseract
 
 
 
6
  import io
7
 
8
-
9
  # Function to calculate SSIM between two images
10
  def calculate_ssim(img1, img2):
11
- img1_gray = Image.open(img1).convert("L")
12
- img2_gray = Image.open(img2).convert("L")
13
- return ssim(img1_gray, img2_gray)
14
-
15
 
16
- # Function to extract text from an image using OCR
17
- def extract_text(image):
18
- image = Image.open(image)
19
- text = pytesseract.image_to_string(image).lower()
20
- return text
21
-
22
- # Function to compare trademarks based on text similarity
23
- def compare_text(trademark1, trademark2):
24
- text1 = extract_text(trademark1)
25
- text2 = extract_text(trademark2)
26
- similarity_ratio = SequenceMatcher(None, text1, text2).ratio()
27
- return similarity_ratio
28
-
29
- # Function to compare trademarks based on color similarity
30
- def compare_colors(trademark1, trademark2):
31
- trademark1 = trademark1.convert("RGB")
32
- trademark2 = trademark2.convert("RGB")
33
- colors1 = trademark1.getcolors(trademark1.size[0] * trademark1.size[1])
34
- colors2 = trademark2.getcolors(trademark2.size[0] * trademark2.size[1])
35
- color_vector1 = sum([(count * np.array(color)) for count, color in colors1]) / (trademark1.size[0] * trademark1.size[1])
36
- color_vector2 = sum([(count * np.array(color)) for count, color in colors2]) / (trademark2.size[0] * trademark2.size[1])
37
- color_similarity = 1 - np.linalg.norm(color_vector1 - color_vector2)
38
- return color_similarity
39
-
40
- # Function to compare trademarks based on multiple aspects
41
  def compare_trademarks(trademark1, trademark2):
42
  ssim_score = calculate_ssim(trademark1, trademark2)
43
- text_similarity = compare_text(trademark1, trademark2)
44
- color_similarity = compare_colors(trademark1, trademark2)
45
-
46
- # Adjust weights based on the importance of each aspect
47
- ssim_weight = 0.6
48
- text_weight = 0.2
49
- color_weight = 0.2
50
-
51
- overall_similarity = (ssim_weight * ssim_score) + (text_weight * text_similarity) + (color_weight * color_similarity)
52
- return overall_similarity
53
 
54
- # Function to perform trademark conflict prevention
55
  def prevent_trademark_conflict(trademark1, trademark2):
56
  similarity_score = compare_trademarks(trademark1, trademark2)
57
- result = f"Trademark Similarity Score: {similarity_score:.4f}"
58
- return result
59
 
 
60
  iface = gr.Interface(
61
  fn=prevent_trademark_conflict,
62
  inputs=[
63
- gr.inputs.File(label="Trademark Image 1"),
64
- gr.inputs.File(label="Trademark Image 2")
65
  ],
66
  outputs="text",
67
- title="Trademark Conflict Prevention",
68
- description="Upload two trademark images. Get the trademark similarity score."
69
  )
70
 
 
71
  iface.launch()
 
 
 
 
1
  import gradio as gr
2
+ import cv2
3
+ import numpy as np
4
+ from skimage.metrics import structural_similarity as ssim
5
+ from PIL import Image
6
  import io
7
 
 
8
  # Function to calculate SSIM between two images
9
  def calculate_ssim(img1, img2):
10
+ img1_gray = Image.open(io.BytesIO(img1)).convert("L")
11
+ img2_gray = Image.open(io.BytesIO(img2)).convert("L")
12
+ return ssim(np.array(img1_gray), np.array(img2_gray))
 
13
 
14
+ # Function to compare two trademarks
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
  def compare_trademarks(trademark1, trademark2):
16
  ssim_score = calculate_ssim(trademark1, trademark2)
17
+ return ssim_score
 
 
 
 
 
 
 
 
 
18
 
19
+ # Function to handle the Gradio interface
20
  def prevent_trademark_conflict(trademark1, trademark2):
21
  similarity_score = compare_trademarks(trademark1, trademark2)
22
+ return similarity_score
 
23
 
24
+ # Prepare Gradio interface
25
  iface = gr.Interface(
26
  fn=prevent_trademark_conflict,
27
  inputs=[
28
+ gr.inputs.Image(type="file", label="Trademark Image 1"),
29
+ gr.inputs.Image(type="file", label="Trademark Image 2")
30
  ],
31
  outputs="text",
32
+ title="Trademark Similarity",
33
+ description="Compare two trademarks to check for similarity."
34
  )
35
 
36
+ # Launch the interface
37
  iface.launch()