Spaces:
Running
Running
jaifar530
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -11,6 +11,7 @@ import pickle
|
|
11 |
import numpy as np
|
12 |
from PIL import Image
|
13 |
from joblib import load
|
|
|
14 |
|
15 |
|
16 |
# Custom headers for the HTTP request
|
@@ -36,6 +37,19 @@ st.image(banner_image, caption='', use_column_width=True)
|
|
36 |
|
37 |
################ end loading banner image ##################
|
38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
############# Download Or Check Files/folders exeistince ##############
|
41 |
# Check if the model folder exists
|
@@ -292,18 +306,8 @@ if press_me_button:
|
|
292 |
vectorizer = pickle.load(file)
|
293 |
|
294 |
# Transform the input
|
295 |
-
|
296 |
user_input_transformed = vectorizer.transform([new_text])
|
297 |
|
298 |
-
# Load the saved models and vectorizer
|
299 |
-
|
300 |
-
# loaded_ridge_classifier = joblib.load(f'{excel_file_to_use}_ridge_model.pkl')
|
301 |
-
# loaded_extra_trees_classifier = joblib.load(f'{excel_file_to_use}_extra_trees_model.pkl')
|
302 |
-
# loaded_vectorizer = joblib.load(f'{excel_file_to_use}_vectorizer.pkl')
|
303 |
-
|
304 |
-
# user_input_vectorized = loaded_vectorizer.transform(user_input)
|
305 |
-
|
306 |
-
|
307 |
# Make predictions
|
308 |
ridge_prediction = ridge_model.predict(user_input_transformed)
|
309 |
extra_trees_prediction = extra_trees_model.predict(user_input_transformed)
|
@@ -319,31 +323,66 @@ if press_me_button:
|
|
319 |
"huggingface": "HuggingChat",
|
320 |
"human": "Human-Written"
|
321 |
}
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
|
|
|
|
|
326 |
if ridge_prediction == extra_trees_prediction == predicted_author:
|
327 |
-
st.write(f"Most likely written by: {
|
328 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
329 |
|
330 |
-
|
331 |
-
|
332 |
-
|
|
|
|
|
|
|
333 |
|
334 |
-
|
335 |
-
|
336 |
-
st.write(f"2nd Most likely written by: {ridge_predicted_author_diplay_name}")
|
337 |
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
347 |
|
348 |
# with st.expander("What is this project about?"):
|
349 |
# st.write("""
|
|
|
11 |
import numpy as np
|
12 |
from PIL import Image
|
13 |
from joblib import load
|
14 |
+
import math
|
15 |
|
16 |
|
17 |
# Custom headers for the HTTP request
|
|
|
37 |
|
38 |
################ end loading banner image ##################
|
39 |
|
40 |
+
def get_author_display_name(predicted_author, ridge_prediction, extra_trees_prediction):
|
41 |
+
author_map = {
|
42 |
+
"googlebard": "Google Bard",
|
43 |
+
"gpt3": "ChatGPT-3",
|
44 |
+
"gpt4": "ChatGPT-4",
|
45 |
+
"huggingface": "HuggingChat",
|
46 |
+
"human": "Human-Written"
|
47 |
+
}
|
48 |
+
cnn_predicted_author_display_name = author_map.get(predicted_author, predicted_author)
|
49 |
+
ridge_predicted_author_display_name = author_map.get(ridge_prediction[0], ridge_prediction[0])
|
50 |
+
extra_trees_predicted_author_display_name = author_map.get(extra_trees_prediction[0], extra_trees_prediction[0])
|
51 |
+
|
52 |
+
return cnn_predicted_author_display_name, ridge_predicted_author_display_name, extra_trees_predicted_author_display_name
|
53 |
|
54 |
############# Download Or Check Files/folders exeistince ##############
|
55 |
# Check if the model folder exists
|
|
|
306 |
vectorizer = pickle.load(file)
|
307 |
|
308 |
# Transform the input
|
|
|
309 |
user_input_transformed = vectorizer.transform([new_text])
|
310 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
311 |
# Make predictions
|
312 |
ridge_prediction = ridge_model.predict(user_input_transformed)
|
313 |
extra_trees_prediction = extra_trees_model.predict(user_input_transformed)
|
|
|
323 |
"huggingface": "HuggingChat",
|
324 |
"human": "Human-Written"
|
325 |
}
|
326 |
+
# cnn_name = author_map.get(predicted_author, predicted_author)
|
327 |
+
# ridge_name = author_map.get(ridge_prediction[0], ridge_prediction[0])
|
328 |
+
# extra_trees_name = author_map.get(extra_trees_prediction[0], extra_trees_prediction[0])
|
329 |
|
330 |
+
cnn_name, ridge_name, extra_trees_name = get_author_display_name(predicted_author, ridge_prediction, extra_trees_prediction)
|
331 |
+
|
332 |
if ridge_prediction == extra_trees_prediction == predicted_author:
|
333 |
+
st.write(f"Most likely written by: {ridge_name}")
|
334 |
|
335 |
+
else:
|
336 |
+
# Repeat the text with a space at the end of each iteration
|
337 |
+
repeated_text = ""
|
338 |
+
max_word_count = 500
|
339 |
+
amplify = 1
|
340 |
+
if word_count >= max_word_count:
|
341 |
+
amplify = 2
|
342 |
+
else
|
343 |
+
amplify = math.ceil(max_word_count / word_count)
|
344 |
|
345 |
+
for _ in range(amplify):
|
346 |
+
repeated_text += new_text + " "
|
347 |
+
|
348 |
+
new_text = repeated_text
|
349 |
+
|
350 |
+
## Repeat ML
|
351 |
|
352 |
+
# Transform the input
|
353 |
+
user_input_transformed = vectorizer.transform([new_text])
|
|
|
354 |
|
355 |
+
# Make predictions
|
356 |
+
ridge_prediction = ridge_model.predict(user_input_transformed)
|
357 |
+
extra_trees_prediction = extra_trees_model.predict(user_input_transformed)
|
358 |
|
359 |
+
### Repeat DL
|
360 |
+
predicted_author, author_probabilities = predict_author(new_text, loaded_model, tokenizer, label_encoder)
|
361 |
+
sorted_probabilities = sorted(author_probabilities.items(), key=lambda x: x[1], reverse=True)
|
362 |
+
|
363 |
+
# Get disply name
|
364 |
+
cnn_name, ridge_name, extra_trees_name = get_author_display_name(predicted_author, ridge_prediction, extra_trees_prediction)
|
365 |
+
|
366 |
+
if ridge_prediction == extra_trees_prediction == predicted_author:
|
367 |
+
st.write(f"Most likely written by: {ridge_name}")
|
368 |
+
|
369 |
+
elif ridge_prediction == extra_trees_prediction:
|
370 |
+
st.write(f"Most likely written by: {ridge_name}")
|
371 |
+
st.write(f"2nd Most likely written by: {cnn_name}")
|
372 |
+
|
373 |
+
elif extra_trees_prediction == predicted_author:
|
374 |
+
st.write(f"Most likely written by: {extra_trees_name}")
|
375 |
+
st.write(f"2nd Most likely written by: {ridge_name}")
|
376 |
+
|
377 |
+
elif ridge_prediction == predicted_author:
|
378 |
+
st.write(f"Most likely written by: {ridge_name}")
|
379 |
+
st.write(f"2nd Most likely written by: {extra_trees_name}")
|
380 |
+
|
381 |
+
else:
|
382 |
+
st.write("Difficult to predict this text, \nit might fill into one of the below:")
|
383 |
+
st.write(f"- {ridge_name}")
|
384 |
+
st.write(f"- {cnn_name}")
|
385 |
+
st.write(f"- {extra_trees_name}")
|
386 |
|
387 |
# with st.expander("What is this project about?"):
|
388 |
# st.write("""
|