File size: 4,837 Bytes
718a03f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1bc4be8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
from unittest import result
from tensorflow.keras.applications.vgg16 import preprocess_input
from keras_vggface.vggface import VGGFace
from src.utils.all_utils import read_yaml,  create_dir
import pickle
from sklearn.metrics.pairwise import cosine_similarity
import streamlit as st
from PIL import Image
import os
import cv2
from mtcnn import MTCNN
import numpy as np
import base64
from static.load_css import local_css


local_css("static/style.css")

def get_base64(bin_file):
    with open(bin_file, 'rb') as f:
        data = f.read()
    return base64.b64encode(data).decode()

def set_background(png_file):
    bin_str = get_base64(png_file)
    page_bg_img = '''
    <style>
    body {
    background-image: url("data:image/png;base64,%s");
    background-size: cover;
    }
    </style>
    ''' % bin_str
    st.markdown(page_bg_img, unsafe_allow_html=True)

set_background('artifacts/images.jpg')


config = read_yaml("config/config.yaml")
params = read_yaml('params.yaml')

artifacts = config['artifacts']
artifacts_dirs = artifacts['artifacts_dir']

upload_image_dir = artifacts['upload_image_dir']
upload_path = os.path.join(artifacts_dirs, upload_image_dir)

pickle_format_dirs = artifacts['pickle_format_data_dir']
img_pickle_file_name = artifacts['img_pickle_file_name']
pickle_actor_name = artifacts['pickle_actor_names']

pickle_dir_path = os.path.join(artifacts_dirs, pickle_format_dirs)
pickle_file = os.path.join(pickle_dir_path, img_pickle_file_name)
pickle_actor = os.path.join(pickle_dir_path, pickle_actor_name)

feature_extractor_dir = artifacts['feature_extraction_dir']
extracted_feature_name = artifacts['extracted_features_name']

feature_extractor_path = os.path.join(artifacts_dirs, feature_extractor_dir)
feature_name = os.path.join(feature_extractor_path, extracted_feature_name)

data = params['base']['data_path']

model_name = params['base']['BASE_MODEL']
include_top = params['base']['include_top']
pooling = params['base']['pooling']

detector = MTCNN()
model = VGGFace(model= model_name, include_top=include_top, input_shape=(244,244,3), pooling=pooling)

filenames = pickle.load(open(pickle_file, 'rb'))
feature_list = pickle.load(open(feature_name, 'rb'))
actor_names = pickle.load(open(pickle_actor, 'rb'))

def extracted_features(img_path, model, detector):
    img = cv2.imread(img_path)
    result = detector.detect_faces(img)

    x,y,width, heigth = result[0]['box']
    face = img[y:y+heigth, x:x+width]
    image = Image.fromarray(face)
    image= image.resize((244,244))

    face_array = np.asarray(image)
    face_array = face_array.astype('float32')

    expanded_img = np.expand_dims(face_array, axis= 0)
    preprocess_img = preprocess_input(expanded_img)
    result= model.predict(preprocess_img).flatten()

    return result

def recommed(feature_list, features):
    similarity = []
    for i in range(len(feature_list)):
        similarity.append(cosine_similarity(features.reshape(1,-1), feature_list[i].reshape(1,-1))[0][0])


    result = sorted(list(enumerate(similarity)), reverse=True, key=lambda x: x[1])[0]
    index_pos = result[0]
    percentage = result[1]

    return index_pos, percentage

def save_upload_image(upload_image):
    try:
        create_dir([upload_path])
        with open(os.path.join(upload_path, upload_image.name), 'wb') as f:
            f.write(upload_image.getbuffer())
        return True
    except:
        return False

main_title = "<center><div><p class='highlight grey' style='font-size:47px'><span class='bold'>Guess your look alike celebrity</span></span></div></center>"
st.markdown(main_title, unsafe_allow_html=True)


uploaded_image = st.file_uploader('Choose a image')
if uploaded_image is not None:
    if save_upload_image(uploaded_image):

        display_image = Image.open(uploaded_image)
        resized_display_img = display_image.resize((260,320), Image.ANTIALIAS)
    

        upload_image_path = os.path.join(upload_path, uploaded_image.name) 
        features = extracted_features(upload_image_path, model, detector)
        img_path, percentage = recommed(feature_list, features)
        actor_path = filenames[img_path]
        

        predicted_actor =   " ".join(actor_path.split('\\')[2].split('_'))

        actor_root_name = actor_path.split('\\')[2]
        pred_actor_path = os.path.join(data,actor_root_name, '1.jpg' )

        pred_actor_image = Image.open(pred_actor_path)
        resized_actor_img = pred_actor_image.resize((260,320), Image.ANTIALIAS)

        st.header(f'You look like {predicted_actor} with {np.round(percentage*100,0)}% similarity')

        col1, col2 = st.beta_columns(2)

        with col1:
            st.markdown("Thats you")
            st.image(resized_display_img)

        with col2:
            st.markdown("Your look alike celelb")
            st.image(resized_actor_img)