Spaces:
Sleeping
Sleeping
File size: 4,837 Bytes
718a03f 1bc4be8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
from unittest import result
from tensorflow.keras.applications.vgg16 import preprocess_input
from keras_vggface.vggface import VGGFace
from src.utils.all_utils import read_yaml, create_dir
import pickle
from sklearn.metrics.pairwise import cosine_similarity
import streamlit as st
from PIL import Image
import os
import cv2
from mtcnn import MTCNN
import numpy as np
import base64
from static.load_css import local_css
local_css("static/style.css")
def get_base64(bin_file):
with open(bin_file, 'rb') as f:
data = f.read()
return base64.b64encode(data).decode()
def set_background(png_file):
bin_str = get_base64(png_file)
page_bg_img = '''
<style>
body {
background-image: url("data:image/png;base64,%s");
background-size: cover;
}
</style>
''' % bin_str
st.markdown(page_bg_img, unsafe_allow_html=True)
set_background('artifacts/images.jpg')
config = read_yaml("config/config.yaml")
params = read_yaml('params.yaml')
artifacts = config['artifacts']
artifacts_dirs = artifacts['artifacts_dir']
upload_image_dir = artifacts['upload_image_dir']
upload_path = os.path.join(artifacts_dirs, upload_image_dir)
pickle_format_dirs = artifacts['pickle_format_data_dir']
img_pickle_file_name = artifacts['img_pickle_file_name']
pickle_actor_name = artifacts['pickle_actor_names']
pickle_dir_path = os.path.join(artifacts_dirs, pickle_format_dirs)
pickle_file = os.path.join(pickle_dir_path, img_pickle_file_name)
pickle_actor = os.path.join(pickle_dir_path, pickle_actor_name)
feature_extractor_dir = artifacts['feature_extraction_dir']
extracted_feature_name = artifacts['extracted_features_name']
feature_extractor_path = os.path.join(artifacts_dirs, feature_extractor_dir)
feature_name = os.path.join(feature_extractor_path, extracted_feature_name)
data = params['base']['data_path']
model_name = params['base']['BASE_MODEL']
include_top = params['base']['include_top']
pooling = params['base']['pooling']
detector = MTCNN()
model = VGGFace(model= model_name, include_top=include_top, input_shape=(244,244,3), pooling=pooling)
filenames = pickle.load(open(pickle_file, 'rb'))
feature_list = pickle.load(open(feature_name, 'rb'))
actor_names = pickle.load(open(pickle_actor, 'rb'))
def extracted_features(img_path, model, detector):
img = cv2.imread(img_path)
result = detector.detect_faces(img)
x,y,width, heigth = result[0]['box']
face = img[y:y+heigth, x:x+width]
image = Image.fromarray(face)
image= image.resize((244,244))
face_array = np.asarray(image)
face_array = face_array.astype('float32')
expanded_img = np.expand_dims(face_array, axis= 0)
preprocess_img = preprocess_input(expanded_img)
result= model.predict(preprocess_img).flatten()
return result
def recommed(feature_list, features):
similarity = []
for i in range(len(feature_list)):
similarity.append(cosine_similarity(features.reshape(1,-1), feature_list[i].reshape(1,-1))[0][0])
result = sorted(list(enumerate(similarity)), reverse=True, key=lambda x: x[1])[0]
index_pos = result[0]
percentage = result[1]
return index_pos, percentage
def save_upload_image(upload_image):
try:
create_dir([upload_path])
with open(os.path.join(upload_path, upload_image.name), 'wb') as f:
f.write(upload_image.getbuffer())
return True
except:
return False
main_title = "<center><div><p class='highlight grey' style='font-size:47px'><span class='bold'>Guess your look alike celebrity</span></span></div></center>"
st.markdown(main_title, unsafe_allow_html=True)
uploaded_image = st.file_uploader('Choose a image')
if uploaded_image is not None:
if save_upload_image(uploaded_image):
display_image = Image.open(uploaded_image)
resized_display_img = display_image.resize((260,320), Image.ANTIALIAS)
upload_image_path = os.path.join(upload_path, uploaded_image.name)
features = extracted_features(upload_image_path, model, detector)
img_path, percentage = recommed(feature_list, features)
actor_path = filenames[img_path]
predicted_actor = " ".join(actor_path.split('\\')[2].split('_'))
actor_root_name = actor_path.split('\\')[2]
pred_actor_path = os.path.join(data,actor_root_name, '1.jpg' )
pred_actor_image = Image.open(pred_actor_path)
resized_actor_img = pred_actor_image.resize((260,320), Image.ANTIALIAS)
st.header(f'You look like {predicted_actor} with {np.round(percentage*100,0)}% similarity')
col1, col2 = st.beta_columns(2)
with col1:
st.markdown("Thats you")
st.image(resized_display_img)
with col2:
st.markdown("Your look alike celelb")
st.image(resized_actor_img) |