File size: 2,534 Bytes
5c11384
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
from utils.all_utils import read_yaml, create_dir
import os
import pickle
from mtcnn import MTCNN
from tensorflow.keras.preprocessing import image
from tqdm import tqdm
import cv2


def extract_face_from_image(image_path, required_size=(224, 224)):
    img = cv2.imread(image_path)
        
    detector = MTCNN()
    faces = detector.detect_faces(img)
    if len(faces)>0:

        x, y, width, height = faces[0]['box']
        face_boundary = img[y:y+ height, x:x+width]
        
        image = cv2.resize(face_boundary, required_size)
        return image
    

def generate_image_pickle_file(config_path, params_path):
    config = read_yaml(config_path)
    params = read_yaml(params_path)

    artifacts = config['artifacts']
    artifacts_dir = artifacts['artifacts_dir']
    pickle_format_dir = artifacts['pickle_format_data_dir']
    img_pickle_filename = artifacts['img_pickle_file_name']
    pickle_actors_name = artifacts['pickle_actor_names']
    cropped_dir = artifacts['cropped_dir']

    raw_local_dir_path = os.path.join(artifacts_dir,pickle_format_dir)

    create_dir([raw_local_dir_path])
   

    pickle_file = os.path.join(raw_local_dir_path, img_pickle_filename)
    pickle_actor = os.path.join(raw_local_dir_path,pickle_actors_name)

    data = params['base']['data_path']
    create_dir([os.path.join(data,cropped_dir)])

    actors = os.listdir(data)
    filenames = []
    
    for actor in tqdm(actors):
        count = 0
        actor_crop_dir = os.path.join(data, cropped_dir, actor)
        create_dir([actor_crop_dir])

        for file in os.listdir(os.path.join(data, actor)):
            file_dir = os.path.join(data,actor, file)
            
            try:
                detected_face = extract_face_from_image(file_dir)
                cropped_file_name = actor+ "_" + str(count) + ".jpg"

                cv2.imwrite(os.path.join(actor_crop_dir,cropped_file_name), detected_face)  
                count+=1 
            except:
                pass
            
            
        for file in os.listdir(actor_crop_dir):
            filenames.append(os.path.join(data,cropped_dir,actor,file))
        

    print(f'Total celeb are: {len(actors)}')
    print(f'Total celeb images: {len(filenames)}')

    pickle.dump(filenames, open(pickle_file, 'wb'))
    pickle.dump(actors, open(pickle_actor, 'wb'))

           
if __name__ == '__main__':
    generate_image_pickle_file('config/config.yaml', 'params.yaml')