File size: 10,955 Bytes
75aee9e
 
96a0264
75aee9e
 
 
 
 
96a0264
75aee9e
96a0264
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75aee9e
96a0264
 
 
 
 
 
 
 
 
 
 
 
 
75aee9e
96a0264
 
 
75aee9e
96a0264
 
 
 
 
 
75aee9e
96a0264
 
 
 
75aee9e
96a0264
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75aee9e
96a0264
 
 
 
75aee9e
96a0264
 
75aee9e
96a0264
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75aee9e
96a0264
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75aee9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b446ed6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
import numpy as np
import cv2
from scipy.interpolate import interp1d

class DanceGenerator:
    def __init__(self):
        self.prev_moves = []
        self.style_memory = []
        self.avatar = cv2.imread('assets/dancer_avatar.png')  # Add a dancer avatar image
        
    def generate_dance_sequence(self, all_poses, mode, total_frames, frame_size):
        """Generate complete dance sequence for the entire video"""
        height, width = frame_size
        sequence = []
        
        if mode == "Sync Partner":
            sequence = self._generate_sync_sequence(all_poses, total_frames, frame_size)
        else:
            sequence = self._generate_creative_sequence(all_poses, total_frames, frame_size)
            
        return sequence
        
    def _generate_sync_sequence(self, all_poses, total_frames, frame_size):
        """Generate synchronized dance sequence"""
        height, width = frame_size
        sequence = []
        
        # Convert all poses to arrays
        pose_arrays = []
        for pose in all_poses:
            if pose is not None:
                pose_arrays.append(self._landmarks_to_array(pose))
            else:
                pose_arrays.append(None)
                
        # Generate mirrored sequence with smooth transitions
        for i in range(total_frames):
            frame = np.zeros((height, width, 3), dtype=np.uint8)
            
            if pose_arrays[i] is not None:
                # Mirror the pose
                mirrored = self._mirror_movements(pose_arrays[i])
                
                # Add smooth transition from previous frame
                if i > 0 and pose_arrays[i-1] is not None:
                    mirrored = self._smooth_transition(pose_arrays[i-1], mirrored, 0.3)
                
                # Create dance frame
                frame = self._create_enhanced_dance_frame(
                    mirrored,
                    frame_size,
                    add_effects=True
                )
                
            sequence.append(frame)
            
        return sequence
        
    def _generate_creative_sequence(self, all_poses, total_frames, frame_size):
        """Generate creative dance sequence based on style"""
        height, width = frame_size
        sequence = []
        
        # Analyze style from all poses
        style_patterns = self._analyze_style_patterns(all_poses)
        
        # Generate new sequence using style patterns
        for i in range(total_frames):
            frame = np.zeros((height, width, 3), dtype=np.uint8)
            
            # Generate new pose based on style
            new_pose = self._generate_style_based_pose(style_patterns, i/total_frames)
            
            if new_pose is not None:
                frame = self._create_enhanced_dance_frame(
                    new_pose,
                    frame_size,
                    add_effects=True
                )
                
            sequence.append(frame)
            
        return sequence
        
    def _analyze_style_patterns(self, poses):
        """Analyze dance style patterns from poses"""
        patterns = []
        
        for pose in poses:
            if pose is not None:
                landmarks = self._landmarks_to_array(pose)
                patterns.append(landmarks)
                
        return patterns
        
    def _generate_style_based_pose(self, patterns, progress):
        """Generate new pose based on style patterns and progress"""
        if not patterns:
            return None
            
        # Create smooth interpolation between poses
        num_patterns = len(patterns)
        pattern_idx = int(progress * (num_patterns - 1))
        
        if pattern_idx < num_patterns - 1:
            t = progress * (num_patterns - 1) - pattern_idx
            pose = self._interpolate_poses(
                patterns[pattern_idx],
                patterns[pattern_idx + 1],
                t
            )
        else:
            pose = patterns[-1]
            
        return pose
        
    def _interpolate_poses(self, pose1, pose2, t):
        """Smoothly interpolate between two poses"""
        return pose1 * (1 - t) + pose2 * t
        
    def _create_enhanced_dance_frame(self, pose_array, frame_size, add_effects=True):
        """Create enhanced visualization frame with effects"""
        height, width = frame_size
        frame = np.zeros((height, width, 3), dtype=np.uint8)
        
        # Convert coordinates
        points = (pose_array[:, :2] * [width, height]).astype(int)
        
        # Draw enhanced skeleton
        connections = self._get_pose_connections()
        for connection in connections:
            start_idx, end_idx = connection
            if start_idx < len(points) and end_idx < len(points):
                # Draw glowing lines
                if add_effects:
                    self._draw_glowing_line(
                        frame,
                        points[start_idx],
                        points[end_idx],
                        (0, 255, 0)
                    )
                else:
                    cv2.line(frame, 
                            tuple(points[start_idx]), 
                            tuple(points[end_idx]),
                            (0, 255, 0), 2)
        
        # Draw enhanced joints
        for point in points:
            if add_effects:
                self._draw_glowing_point(frame, point, (0, 0, 255))
            else:
                cv2.circle(frame, tuple(point), 4, (0, 0, 255), -1)
                
        return frame
        
    def _draw_glowing_line(self, frame, start, end, color, thickness=2):
        """Draw a line with glow effect"""
        # Draw main line
        cv2.line(frame, tuple(start), tuple(end), color, thickness)
        
        # Draw glow
        for i in range(3):
            alpha = 0.3 - i * 0.1
            thickness = thickness + 2
            cv2.line(frame, tuple(start), tuple(end),
                    tuple([int(c * alpha) for c in color]),
                    thickness)
                    
    def _draw_glowing_point(self, frame, point, color, radius=4):
        """Draw a point with glow effect"""
        # Draw main point
        cv2.circle(frame, tuple(point), radius, color, -1)
        
        # Draw glow
        for i in range(3):
            alpha = 0.3 - i * 0.1
            r = radius + i * 2
            cv2.circle(frame, tuple(point), r,
                      tuple([int(c * alpha) for c in color]),
                      -1)

    def _landmarks_to_array(self, landmarks):
        """Convert MediaPipe landmarks to numpy array"""
        points = []
        for landmark in landmarks.landmark:
            points.append([landmark.x, landmark.y, landmark.z])
        return np.array(points)
        
    def _mirror_movements(self, landmarks):
        """Mirror the input movements"""
        mirrored = landmarks.copy()
        mirrored[:, 0] = 1 - mirrored[:, 0]  # Flip x coordinates
        return mirrored
        
    def _update_style_memory(self, landmarks):
        """Update memory of dance style"""
        self.style_memory.append(landmarks)
        if len(self.style_memory) > 30:  # Keep last 30 frames
            self.style_memory.pop(0)
            
    def _generate_style_based_moves(self):
        """Generate new moves based on learned style"""
        if not self.style_memory:
            return np.zeros((33, 3))  # Default pose shape
            
        # Simple implementation: interpolate between stored poses
        base_pose = self.style_memory[-1]
        if len(self.style_memory) > 1:
            prev_pose = self.style_memory[-2]
            t = np.random.random()
            new_pose = t * base_pose + (1-t) * prev_pose
        else:
            new_pose = base_pose
            
        return new_pose
        
    def _create_dance_frame(self, pose_array):
        """Create visualization frame from pose array"""
        frame = np.zeros((480, 640, 3), dtype=np.uint8)
        
        # Convert normalized coordinates to pixel coordinates
        points = (pose_array[:, :2] * [640, 480]).astype(int)
        
        # Draw connections between joints
        connections = self._get_pose_connections()
        for connection in connections:
            start_idx, end_idx = connection
            if start_idx < len(points) and end_idx < len(points):
                cv2.line(frame, 
                        tuple(points[start_idx]), 
                        tuple(points[end_idx]),
                        (0, 255, 0), 2)
                
        # Draw joints
        for point in points:
            cv2.circle(frame, tuple(point), 4, (0, 0, 255), -1)
            
        return frame
        
    def _get_pose_connections(self):
        """Define connections between pose landmarks"""
        return [
            (0, 1), (1, 2), (2, 3), (3, 7),  # Face
            (0, 4), (4, 5), (5, 6), (6, 8),
            (9, 10), (11, 12), (11, 13), (13, 15),  # Arms
            (12, 14), (14, 16),
            (11, 23), (12, 24),  # Torso
            (23, 24), (23, 25), (24, 26),  # Legs
            (25, 27), (26, 28), (27, 29), (28, 30),
            (29, 31), (30, 32)
        ]
        
    def _smooth_transition(self, prev_pose, current_pose, smoothing_factor=0.3):
        """Create smooth transition between poses"""
        if prev_pose is None or current_pose is None:
            return current_pose
            
        # Interpolate between previous and current pose
        smoothed_pose = (1 - smoothing_factor) * prev_pose + smoothing_factor * current_pose
        
        # Ensure the smoothed pose maintains proper proportions
        # Normalize joint positions relative to hip center
        hip_center_idx = 23  # Index for hip center landmark
        
        prev_hip = prev_pose[hip_center_idx]
        current_hip = current_pose[hip_center_idx]
        smoothed_hip = smoothed_pose[hip_center_idx]
        
        # Adjust positions relative to hip center
        for i in range(len(smoothed_pose)):
            if i != hip_center_idx:
                # Calculate relative positions
                prev_relative = prev_pose[i] - prev_hip
                current_relative = current_pose[i] - current_hip
                
                # Interpolate relative positions
                smoothed_relative = (1 - smoothing_factor) * prev_relative + smoothing_factor * current_relative
                
                # Update smoothed pose
                smoothed_pose[i] = smoothed_hip + smoothed_relative
        
        return smoothed_pose