File size: 16,903 Bytes
bbed0a3 15e355e bbed0a3 15e355e bbed0a3 15e355e bbed0a3 15e355e bbed0a3 15e355e bbed0a3 15e355e bbed0a3 15e355e bbed0a3 15e355e bbed0a3 15e355e bbed0a3 15e355e bbed0a3 15e355e bbed0a3 15e355e bbed0a3 f7b842d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 |
# Import necessary libraries
import cv2
import mediapipe as mp
import numpy as np
from scipy.interpolate import interp1d
import time
import os
import tempfile
class PoseDetector:
def __init__(self):
self.mp_pose = mp.solutions.pose
self.pose = self.mp_pose.Pose(
min_detection_confidence=0.5,
min_tracking_confidence=0.5
)
def detect_pose(self, frame):
rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
results = self.pose.process(rgb_frame)
return results.pose_landmarks if results.pose_landmarks else None
class DanceGenerator:
def __init__(self):
self.prev_moves = []
self.style_memory = []
self.rhythm_patterns = []
def generate_dance_sequence(self, all_poses, mode, total_frames, frame_size):
height, width = frame_size
sequence = []
if mode == "Sync Partner":
sequence = self._generate_sync_sequence(all_poses, total_frames, frame_size)
else:
sequence = self._generate_creative_sequence(all_poses, total_frames, frame_size)
return sequence
def _generate_sync_sequence(self, all_poses, total_frames, frame_size):
height, width = frame_size
sequence = []
# Enhanced rhythm analysis
rhythm_window = 10 # Analyze chunks of frames for rhythm
beat_positions = self._detect_dance_beats(all_poses, rhythm_window)
pose_arrays = []
for pose in all_poses:
if pose is not None:
pose_arrays.append(self._landmarks_to_array(pose))
else:
pose_arrays.append(None)
for i in range(total_frames):
frame = np.zeros((height, width, 3), dtype=np.uint8)
if pose_arrays[i] is not None:
# Enhanced mirroring with rhythm awareness
mirrored = self._mirror_movements(pose_arrays[i])
# Apply rhythm-based movement enhancement
if i in beat_positions:
mirrored = self._enhance_movement_on_beat(mirrored)
if i > 0 and pose_arrays[i-1] is not None:
mirrored = self._smooth_transition(pose_arrays[i-1], mirrored, 0.3)
frame = self._create_enhanced_dance_frame(
mirrored,
frame_size,
add_effects=True
)
sequence.append(frame)
return sequence
def _detect_dance_beats(self, poses, window_size):
"""Detect main beats in the dance sequence"""
beat_positions = []
if len(poses) < window_size:
return beat_positions
for i in range(window_size, len(poses)):
if poses[i] is not None and poses[i-1] is not None:
curr_pose = self._landmarks_to_array(poses[i])
prev_pose = self._landmarks_to_array(poses[i-1])
# Calculate movement magnitude
movement = np.mean(np.abs(curr_pose - prev_pose))
# Detect significant movements as beats
if movement > np.mean(self.rhythm_patterns) + np.std(self.rhythm_patterns):
beat_positions.append(i)
return beat_positions
def _enhance_movement_on_beat(self, pose):
"""Enhance movements during detected beats"""
# Amplify movements slightly on beats
center = np.mean(pose, axis=0)
enhanced_pose = pose.copy()
for i in range(len(pose)):
# Amplify movement relative to center
vector = pose[i] - center
enhanced_pose[i] = center + vector * 1.2
return enhanced_pose
def _generate_creative_sequence(self, all_poses, total_frames, frame_size):
"""Generate creative dance sequence based on style"""
height, width = frame_size
sequence = []
# Analyze style from all poses
style_patterns = self._analyze_style_patterns(all_poses)
# Generate new sequence using style patterns
for i in range(total_frames):
frame = np.zeros((height, width, 3), dtype=np.uint8)
# Generate new pose based on style
new_pose = self._generate_style_based_pose(style_patterns, i/total_frames)
if new_pose is not None:
frame = self._create_enhanced_dance_frame(
new_pose,
frame_size,
add_effects=True
)
sequence.append(frame)
return sequence
def _analyze_style_patterns(self, poses):
"""Enhanced style analysis including rhythm and movement patterns"""
patterns = []
rhythm_data = []
for i in range(1, len(poses)):
if poses[i] is not None and poses[i-1] is not None:
# Calculate movement speed and direction
curr_pose = self._landmarks_to_array(poses[i])
prev_pose = self._landmarks_to_array(poses[i-1])
# Analyze movement velocity
velocity = np.mean(np.abs(curr_pose - prev_pose), axis=0)
rhythm_data.append(velocity)
# Store enhanced pattern data
pattern_info = {
'pose': curr_pose,
'velocity': velocity,
'acceleration': velocity if i == 1 else velocity - prev_velocity
}
patterns.append(pattern_info)
prev_velocity = velocity
self.rhythm_patterns = rhythm_data
return patterns
def _generate_style_based_pose(self, patterns, progress):
"""Generate new pose based on style patterns and progress"""
if not patterns:
return None
# Create smooth interpolation between poses
num_patterns = len(patterns)
pattern_idx = int(progress * (num_patterns - 1))
if pattern_idx < num_patterns - 1:
t = progress * (num_patterns - 1) - pattern_idx
# Extract pose arrays from pattern dictionaries
pose1 = patterns[pattern_idx]['pose']
pose2 = patterns[pattern_idx + 1]['pose']
pose = self._interpolate_poses(pose1, pose2, t)
else:
pose = patterns[-1]['pose']
return pose
def _interpolate_poses(self, pose1, pose2, t):
"""Smoothly interpolate between two poses"""
if isinstance(pose1, dict):
pose1 = pose1['pose']
if isinstance(pose2, dict):
pose2 = pose2['pose']
return pose1 * (1 - t) + pose2 * t
def _create_enhanced_dance_frame(self, pose_array, frame_size, add_effects=True):
"""Create enhanced visualization frame with effects"""
height, width = frame_size
# Create transparent background
frame = np.zeros((height, width, 3), dtype=np.uint8) # Black background
# Convert coordinates
points = (pose_array[:, :2] * [width, height]).astype(int)
# Draw enhanced skeleton with neon effects
connections = self._get_pose_connections()
# Define body parts and their colors
body_parts = {
'spine': [(11, 23), (23, 24), (11, 12)], # Torso
'right_arm': [(11, 13), (13, 15)], # Right arm
'left_arm': [(12, 14), (14, 16)], # Left arm
'right_leg': [(23, 25), (25, 27), (27, 29), (29, 31)], # Right leg
'left_leg': [(24, 26), (26, 28), (28, 30), (30, 32)], # Left leg
'face': [(0, 1), (1, 2), (2, 3), (3, 7), (0, 4), (4, 5), (5, 6), (6, 8)] # Face
}
colors = {
'spine': (0, 255, 255), # Cyan
'right_arm': (0, 255, 0), # Green
'left_arm': (0, 255, 0), # Green
'right_leg': (255, 0, 255), # Magenta
'left_leg': (255, 0, 255), # Magenta
'face': (255, 255, 0) # Yellow
}
# Draw body parts with glow effects
for part, connections_list in body_parts.items():
color = colors[part]
for connection in connections_list:
start_idx, end_idx = connection
if start_idx < len(points) and end_idx < len(points):
if add_effects:
self._draw_glowing_line(
frame,
points[start_idx],
points[end_idx],
color,
thickness=3
)
else:
cv2.line(frame,
tuple(points[start_idx]),
tuple(points[end_idx]),
color, 3)
# Draw enhanced joints with glow
for i, point in enumerate(points):
if add_effects:
# Different colors for different body parts
if i in [0,1,2,3,4,5,6,7,8]: # Face points
color = (255, 255, 0) # Yellow
elif i in [11,12,23,24]: # Torso points
color = (0, 255, 255) # Cyan
elif i in [13,14,15,16]: # Arms points
color = (0, 255, 0) # Green
else: # Legs points
color = (255, 0, 255) # Magenta
self._draw_glowing_point(frame, point, color, radius=4)
else:
cv2.circle(frame, tuple(point), 4, (255, 255, 255), -1)
return frame
def _draw_glowing_line(self, frame, start, end, color, thickness=3):
"""Draw a line with enhanced neon glow effect"""
# Draw outer glow
for i in range(3):
alpha = 0.3 - i * 0.1
thick = thickness + (i * 2)
blur_color = tuple([int(c * alpha) for c in color])
cv2.line(frame, tuple(start), tuple(end),
blur_color, thick)
# Draw main line
cv2.line(frame, tuple(start), tuple(end), color, thickness)
def _draw_glowing_point(self, frame, point, color, radius=4):
"""Draw a point with enhanced neon glow effect"""
# Draw outer glow
for i in range(3):
alpha = 0.3 - i * 0.1
r = radius + (i * 2)
blur_color = tuple([int(c * alpha) for c in color])
cv2.circle(frame, tuple(point), r,
blur_color, -1)
# Draw main point
cv2.circle(frame, tuple(point), radius, color, -1)
def _landmarks_to_array(self, landmarks):
"""Convert MediaPipe landmarks to numpy array"""
points = []
for landmark in landmarks.landmark:
points.append([landmark.x, landmark.y, landmark.z])
return np.array(points)
def _mirror_movements(self, landmarks):
"""Mirror the input movements"""
mirrored = landmarks.copy()
mirrored[:, 0] = 1 - mirrored[:, 0] # Flip x coordinates
return mirrored
def _update_style_memory(self, landmarks):
"""Update memory of dance style"""
self.style_memory.append(landmarks)
if len(self.style_memory) > 30: # Keep last 30 frames
self.style_memory.pop(0)
def _generate_style_based_moves(self):
"""Generate new moves based on learned style"""
if not self.style_memory:
return np.zeros((33, 3)) # Default pose shape
# Simple implementation: interpolate between stored poses
base_pose = self.style_memory[-1]
if len(self.style_memory) > 1:
prev_pose = self.style_memory[-2]
t = np.random.random()
new_pose = t * base_pose + (1-t) * prev_pose
else:
new_pose = base_pose
return new_pose
def _create_dance_frame(self, pose_array):
"""Create visualization frame from pose array"""
frame = np.zeros((480, 640, 3), dtype=np.uint8)
# Convert normalized coordinates to pixel coordinates
points = (pose_array[:, :2] * [640, 480]).astype(int)
# Draw connections between joints
connections = self._get_pose_connections()
for connection in connections:
start_idx, end_idx = connection
if start_idx < len(points) and end_idx < len(points):
cv2.line(frame,
tuple(points[start_idx]),
tuple(points[end_idx]),
(0, 255, 0), 2)
# Draw joints
for point in points:
cv2.circle(frame, tuple(point), 4, (0, 0, 255), -1)
return frame
def _get_pose_connections(self):
"""Define connections between pose landmarks"""
return [
(0, 1), (1, 2), (2, 3), (3, 7), # Face
(0, 4), (4, 5), (5, 6), (6, 8),
(9, 10), (11, 12), (11, 13), (13, 15), # Arms
(12, 14), (14, 16),
(11, 23), (12, 24), # Torso
(23, 24), (23, 25), (24, 26), # Legs
(25, 27), (26, 28), (27, 29), (28, 30),
(29, 31), (30, 32)
]
def _smooth_transition(self, prev_pose, current_pose, smoothing_factor=0.3):
"""Create smooth transition between poses"""
if prev_pose is None or current_pose is None:
return current_pose
# Interpolate between previous and current pose
smoothed_pose = (1 - smoothing_factor) * prev_pose + smoothing_factor * current_pose
# Ensure the smoothed pose maintains proper proportions
# Normalize joint positions relative to hip center
hip_center_idx = 23 # Index for hip center landmark
prev_hip = prev_pose[hip_center_idx]
current_hip = current_pose[hip_center_idx]
smoothed_hip = smoothed_pose[hip_center_idx]
# Adjust positions relative to hip center
for i in range(len(smoothed_pose)):
if i != hip_center_idx:
# Calculate relative positions
prev_relative = prev_pose[i] - prev_hip
current_relative = current_pose[i] - current_hip
# Interpolate relative positions
smoothed_relative = (1 - smoothing_factor) * prev_relative + smoothing_factor * current_relative
# Update smoothed pose
smoothed_pose[i] = smoothed_hip + smoothed_relative
return smoothed_pose
class AIDancePartner:
def __init__(self):
self.pose_detector = PoseDetector()
self.dance_generator = DanceGenerator()
def process_video(self, video_path, mode="Sync Partner"):
# Create a temporary directory for output
temp_dir = tempfile.mkdtemp()
output_path = os.path.join(temp_dir, 'output_dance.mp4')
cap = cv2.VideoCapture(video_path)
# Get video properties
fps = int(cap.get(cv2.CAP_PROP_FPS))
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
# Create output video writer
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter(output_path, fourcc, fps,
(frame_width * 2, frame_height))
# Pre-process video to extract all poses
all_poses = []
frame_count = 0
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
pose_landmarks = self.pose_detector.detect_pose(frame)
all_poses.append(pose_landmarks)
frame_count += 1
# Generate AI dance sequence
ai_sequence = self.dance_generator.generate_dance_sequence(
all_poses,
mode,
total_frames,
(frame_height, frame_width)
)
# Reset video capture and create final video
cap.set(cv2.CAP_PROP_POS_FRAMES, 0)
frame_count = 0
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
# Get corresponding AI frame
ai_frame = ai_sequence[frame_count]
# Combine frames side by side
combined_frame = np.hstack([frame, ai_frame])
# Write frame to output video
out.write(combined_frame)
frame_count += 1
# Release resources
cap.release()
out.release()
return output_path |