Upload colab.py
Browse files
colab.py
ADDED
@@ -0,0 +1,469 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
# Import necessary libraries
|
3 |
+
import cv2
|
4 |
+
import mediapipe as mp
|
5 |
+
import numpy as np
|
6 |
+
from scipy.interpolate import interp1d
|
7 |
+
from google.colab import files
|
8 |
+
from IPython.display import HTML, display
|
9 |
+
from IPython.display import clear_output
|
10 |
+
import time
|
11 |
+
import base64
|
12 |
+
|
13 |
+
class PoseDetector:
|
14 |
+
def __init__(self):
|
15 |
+
self.mp_pose = mp.solutions.pose
|
16 |
+
self.pose = self.mp_pose.Pose(
|
17 |
+
min_detection_confidence=0.5,
|
18 |
+
min_tracking_confidence=0.5
|
19 |
+
)
|
20 |
+
|
21 |
+
def detect_pose(self, frame):
|
22 |
+
rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
23 |
+
results = self.pose.process(rgb_frame)
|
24 |
+
return results.pose_landmarks if results.pose_landmarks else None
|
25 |
+
|
26 |
+
class DanceGenerator:
|
27 |
+
def __init__(self):
|
28 |
+
self.prev_moves = []
|
29 |
+
self.style_memory = []
|
30 |
+
self.rhythm_patterns = []
|
31 |
+
|
32 |
+
def generate_dance_sequence(self, all_poses, mode, total_frames, frame_size):
|
33 |
+
height, width = frame_size
|
34 |
+
sequence = []
|
35 |
+
|
36 |
+
if mode == "Sync Partner":
|
37 |
+
sequence = self._generate_sync_sequence(all_poses, total_frames, frame_size)
|
38 |
+
else:
|
39 |
+
sequence = self._generate_creative_sequence(all_poses, total_frames, frame_size)
|
40 |
+
|
41 |
+
return sequence
|
42 |
+
|
43 |
+
def _generate_sync_sequence(self, all_poses, total_frames, frame_size):
|
44 |
+
height, width = frame_size
|
45 |
+
sequence = []
|
46 |
+
|
47 |
+
# Enhanced rhythm analysis
|
48 |
+
rhythm_window = 10 # Analyze chunks of frames for rhythm
|
49 |
+
beat_positions = self._detect_dance_beats(all_poses, rhythm_window)
|
50 |
+
|
51 |
+
pose_arrays = []
|
52 |
+
for pose in all_poses:
|
53 |
+
if pose is not None:
|
54 |
+
pose_arrays.append(self._landmarks_to_array(pose))
|
55 |
+
else:
|
56 |
+
pose_arrays.append(None)
|
57 |
+
|
58 |
+
for i in range(total_frames):
|
59 |
+
frame = np.zeros((height, width, 3), dtype=np.uint8)
|
60 |
+
|
61 |
+
if pose_arrays[i] is not None:
|
62 |
+
# Enhanced mirroring with rhythm awareness
|
63 |
+
mirrored = self._mirror_movements(pose_arrays[i])
|
64 |
+
|
65 |
+
# Apply rhythm-based movement enhancement
|
66 |
+
if i in beat_positions:
|
67 |
+
mirrored = self._enhance_movement_on_beat(mirrored)
|
68 |
+
|
69 |
+
if i > 0 and pose_arrays[i-1] is not None:
|
70 |
+
mirrored = self._smooth_transition(pose_arrays[i-1], mirrored, 0.3)
|
71 |
+
|
72 |
+
frame = self._create_enhanced_dance_frame(
|
73 |
+
mirrored,
|
74 |
+
frame_size,
|
75 |
+
add_effects=True
|
76 |
+
)
|
77 |
+
|
78 |
+
sequence.append(frame)
|
79 |
+
|
80 |
+
return sequence
|
81 |
+
|
82 |
+
def _detect_dance_beats(self, poses, window_size):
|
83 |
+
"""Detect main beats in the dance sequence"""
|
84 |
+
beat_positions = []
|
85 |
+
|
86 |
+
if len(poses) < window_size:
|
87 |
+
return beat_positions
|
88 |
+
|
89 |
+
for i in range(window_size, len(poses)):
|
90 |
+
if poses[i] is not None and poses[i-1] is not None:
|
91 |
+
curr_pose = self._landmarks_to_array(poses[i])
|
92 |
+
prev_pose = self._landmarks_to_array(poses[i-1])
|
93 |
+
|
94 |
+
# Calculate movement magnitude
|
95 |
+
movement = np.mean(np.abs(curr_pose - prev_pose))
|
96 |
+
|
97 |
+
# Detect significant movements as beats
|
98 |
+
if movement > np.mean(self.rhythm_patterns) + np.std(self.rhythm_patterns):
|
99 |
+
beat_positions.append(i)
|
100 |
+
|
101 |
+
return beat_positions
|
102 |
+
|
103 |
+
def _enhance_movement_on_beat(self, pose):
|
104 |
+
"""Enhance movements during detected beats"""
|
105 |
+
# Amplify movements slightly on beats
|
106 |
+
center = np.mean(pose, axis=0)
|
107 |
+
enhanced_pose = pose.copy()
|
108 |
+
|
109 |
+
for i in range(len(pose)):
|
110 |
+
# Amplify movement relative to center
|
111 |
+
vector = pose[i] - center
|
112 |
+
enhanced_pose[i] = center + vector * 1.2
|
113 |
+
|
114 |
+
return enhanced_pose
|
115 |
+
|
116 |
+
def _generate_creative_sequence(self, all_poses, total_frames, frame_size):
|
117 |
+
"""Generate creative dance sequence based on style"""
|
118 |
+
height, width = frame_size
|
119 |
+
sequence = []
|
120 |
+
|
121 |
+
# Analyze style from all poses
|
122 |
+
style_patterns = self._analyze_style_patterns(all_poses)
|
123 |
+
|
124 |
+
# Generate new sequence using style patterns
|
125 |
+
for i in range(total_frames):
|
126 |
+
frame = np.zeros((height, width, 3), dtype=np.uint8)
|
127 |
+
|
128 |
+
# Generate new pose based on style
|
129 |
+
new_pose = self._generate_style_based_pose(style_patterns, i/total_frames)
|
130 |
+
|
131 |
+
if new_pose is not None:
|
132 |
+
frame = self._create_enhanced_dance_frame(
|
133 |
+
new_pose,
|
134 |
+
frame_size,
|
135 |
+
add_effects=True
|
136 |
+
)
|
137 |
+
|
138 |
+
sequence.append(frame)
|
139 |
+
|
140 |
+
return sequence
|
141 |
+
|
142 |
+
def _analyze_style_patterns(self, poses):
|
143 |
+
"""Enhanced style analysis including rhythm and movement patterns"""
|
144 |
+
patterns = []
|
145 |
+
rhythm_data = []
|
146 |
+
|
147 |
+
for i in range(1, len(poses)):
|
148 |
+
if poses[i] is not None and poses[i-1] is not None:
|
149 |
+
# Calculate movement speed and direction
|
150 |
+
curr_pose = self._landmarks_to_array(poses[i])
|
151 |
+
prev_pose = self._landmarks_to_array(poses[i-1])
|
152 |
+
|
153 |
+
# Analyze movement velocity
|
154 |
+
velocity = np.mean(np.abs(curr_pose - prev_pose), axis=0)
|
155 |
+
rhythm_data.append(velocity)
|
156 |
+
|
157 |
+
# Store enhanced pattern data
|
158 |
+
pattern_info = {
|
159 |
+
'pose': curr_pose,
|
160 |
+
'velocity': velocity,
|
161 |
+
'acceleration': velocity if i == 1 else velocity - prev_velocity
|
162 |
+
}
|
163 |
+
patterns.append(pattern_info)
|
164 |
+
prev_velocity = velocity
|
165 |
+
|
166 |
+
self.rhythm_patterns = rhythm_data
|
167 |
+
return patterns
|
168 |
+
|
169 |
+
def _generate_style_based_pose(self, patterns, progress):
|
170 |
+
"""Generate new pose based on style patterns and progress"""
|
171 |
+
if not patterns:
|
172 |
+
return None
|
173 |
+
|
174 |
+
# Create smooth interpolation between poses
|
175 |
+
num_patterns = len(patterns)
|
176 |
+
pattern_idx = int(progress * (num_patterns - 1))
|
177 |
+
|
178 |
+
if pattern_idx < num_patterns - 1:
|
179 |
+
t = progress * (num_patterns - 1) - pattern_idx
|
180 |
+
pose = self._interpolate_poses(
|
181 |
+
patterns[pattern_idx],
|
182 |
+
patterns[pattern_idx + 1],
|
183 |
+
t
|
184 |
+
)
|
185 |
+
else:
|
186 |
+
pose = patterns[-1]
|
187 |
+
|
188 |
+
return pose
|
189 |
+
|
190 |
+
def _interpolate_poses(self, pose1, pose2, t):
|
191 |
+
"""Smoothly interpolate between two poses"""
|
192 |
+
return pose1 * (1 - t) + pose2 * t
|
193 |
+
|
194 |
+
def _create_enhanced_dance_frame(self, pose_array, frame_size, add_effects=True):
|
195 |
+
"""Create enhanced visualization frame with effects"""
|
196 |
+
height, width = frame_size
|
197 |
+
frame = np.zeros((height, width, 3), dtype=np.uint8)
|
198 |
+
|
199 |
+
# Convert coordinates
|
200 |
+
points = (pose_array[:, :2] * [width, height]).astype(int)
|
201 |
+
|
202 |
+
# Draw enhanced skeleton
|
203 |
+
connections = self._get_pose_connections()
|
204 |
+
for connection in connections:
|
205 |
+
start_idx, end_idx = connection
|
206 |
+
if start_idx < len(points) and end_idx < len(points):
|
207 |
+
# Draw glowing lines
|
208 |
+
if add_effects:
|
209 |
+
self._draw_glowing_line(
|
210 |
+
frame,
|
211 |
+
points[start_idx],
|
212 |
+
points[end_idx],
|
213 |
+
(0, 255, 0)
|
214 |
+
)
|
215 |
+
else:
|
216 |
+
cv2.line(frame,
|
217 |
+
tuple(points[start_idx]),
|
218 |
+
tuple(points[end_idx]),
|
219 |
+
(0, 255, 0), 2)
|
220 |
+
|
221 |
+
# Draw enhanced joints
|
222 |
+
for point in points:
|
223 |
+
if add_effects:
|
224 |
+
self._draw_glowing_point(frame, point, (0, 0, 255))
|
225 |
+
else:
|
226 |
+
cv2.circle(frame, tuple(point), 4, (0, 0, 255), -1)
|
227 |
+
|
228 |
+
return frame
|
229 |
+
|
230 |
+
def _draw_glowing_line(self, frame, start, end, color, thickness=2):
|
231 |
+
"""Draw a line with glow effect"""
|
232 |
+
# Draw main line
|
233 |
+
cv2.line(frame, tuple(start), tuple(end), color, thickness)
|
234 |
+
|
235 |
+
# Draw glow
|
236 |
+
for i in range(3):
|
237 |
+
alpha = 0.3 - i * 0.1
|
238 |
+
thickness = thickness + 2
|
239 |
+
cv2.line(frame, tuple(start), tuple(end),
|
240 |
+
tuple([int(c * alpha) for c in color]),
|
241 |
+
thickness)
|
242 |
+
|
243 |
+
def _draw_glowing_point(self, frame, point, color, radius=4):
|
244 |
+
"""Draw a point with glow effect"""
|
245 |
+
# Draw main point
|
246 |
+
cv2.circle(frame, tuple(point), radius, color, -1)
|
247 |
+
|
248 |
+
# Draw glow
|
249 |
+
for i in range(3):
|
250 |
+
alpha = 0.3 - i * 0.1
|
251 |
+
r = radius + i * 2
|
252 |
+
cv2.circle(frame, tuple(point), r,
|
253 |
+
tuple([int(c * alpha) for c in color]),
|
254 |
+
-1)
|
255 |
+
|
256 |
+
def _landmarks_to_array(self, landmarks):
|
257 |
+
"""Convert MediaPipe landmarks to numpy array"""
|
258 |
+
points = []
|
259 |
+
for landmark in landmarks.landmark:
|
260 |
+
points.append([landmark.x, landmark.y, landmark.z])
|
261 |
+
return np.array(points)
|
262 |
+
|
263 |
+
def _mirror_movements(self, landmarks):
|
264 |
+
"""Mirror the input movements"""
|
265 |
+
mirrored = landmarks.copy()
|
266 |
+
mirrored[:, 0] = 1 - mirrored[:, 0] # Flip x coordinates
|
267 |
+
return mirrored
|
268 |
+
|
269 |
+
def _update_style_memory(self, landmarks):
|
270 |
+
"""Update memory of dance style"""
|
271 |
+
self.style_memory.append(landmarks)
|
272 |
+
if len(self.style_memory) > 30: # Keep last 30 frames
|
273 |
+
self.style_memory.pop(0)
|
274 |
+
|
275 |
+
def _generate_style_based_moves(self):
|
276 |
+
"""Generate new moves based on learned style"""
|
277 |
+
if not self.style_memory:
|
278 |
+
return np.zeros((33, 3)) # Default pose shape
|
279 |
+
|
280 |
+
# Simple implementation: interpolate between stored poses
|
281 |
+
base_pose = self.style_memory[-1]
|
282 |
+
if len(self.style_memory) > 1:
|
283 |
+
prev_pose = self.style_memory[-2]
|
284 |
+
t = np.random.random()
|
285 |
+
new_pose = t * base_pose + (1-t) * prev_pose
|
286 |
+
else:
|
287 |
+
new_pose = base_pose
|
288 |
+
|
289 |
+
return new_pose
|
290 |
+
|
291 |
+
def _create_dance_frame(self, pose_array):
|
292 |
+
"""Create visualization frame from pose array"""
|
293 |
+
frame = np.zeros((480, 640, 3), dtype=np.uint8)
|
294 |
+
|
295 |
+
# Convert normalized coordinates to pixel coordinates
|
296 |
+
points = (pose_array[:, :2] * [640, 480]).astype(int)
|
297 |
+
|
298 |
+
# Draw connections between joints
|
299 |
+
connections = self._get_pose_connections()
|
300 |
+
for connection in connections:
|
301 |
+
start_idx, end_idx = connection
|
302 |
+
if start_idx < len(points) and end_idx < len(points):
|
303 |
+
cv2.line(frame,
|
304 |
+
tuple(points[start_idx]),
|
305 |
+
tuple(points[end_idx]),
|
306 |
+
(0, 255, 0), 2)
|
307 |
+
|
308 |
+
# Draw joints
|
309 |
+
for point in points:
|
310 |
+
cv2.circle(frame, tuple(point), 4, (0, 0, 255), -1)
|
311 |
+
|
312 |
+
return frame
|
313 |
+
|
314 |
+
def _get_pose_connections(self):
|
315 |
+
"""Define connections between pose landmarks"""
|
316 |
+
return [
|
317 |
+
(0, 1), (1, 2), (2, 3), (3, 7), # Face
|
318 |
+
(0, 4), (4, 5), (5, 6), (6, 8),
|
319 |
+
(9, 10), (11, 12), (11, 13), (13, 15), # Arms
|
320 |
+
(12, 14), (14, 16),
|
321 |
+
(11, 23), (12, 24), # Torso
|
322 |
+
(23, 24), (23, 25), (24, 26), # Legs
|
323 |
+
(25, 27), (26, 28), (27, 29), (28, 30),
|
324 |
+
(29, 31), (30, 32)
|
325 |
+
]
|
326 |
+
|
327 |
+
def _smooth_transition(self, prev_pose, current_pose, smoothing_factor=0.3):
|
328 |
+
"""Create smooth transition between poses"""
|
329 |
+
if prev_pose is None or current_pose is None:
|
330 |
+
return current_pose
|
331 |
+
|
332 |
+
# Interpolate between previous and current pose
|
333 |
+
smoothed_pose = (1 - smoothing_factor) * prev_pose + smoothing_factor * current_pose
|
334 |
+
|
335 |
+
# Ensure the smoothed pose maintains proper proportions
|
336 |
+
# Normalize joint positions relative to hip center
|
337 |
+
hip_center_idx = 23 # Index for hip center landmark
|
338 |
+
|
339 |
+
prev_hip = prev_pose[hip_center_idx]
|
340 |
+
current_hip = current_pose[hip_center_idx]
|
341 |
+
smoothed_hip = smoothed_pose[hip_center_idx]
|
342 |
+
|
343 |
+
# Adjust positions relative to hip center
|
344 |
+
for i in range(len(smoothed_pose)):
|
345 |
+
if i != hip_center_idx:
|
346 |
+
# Calculate relative positions
|
347 |
+
prev_relative = prev_pose[i] - prev_hip
|
348 |
+
current_relative = current_pose[i] - current_hip
|
349 |
+
|
350 |
+
# Interpolate relative positions
|
351 |
+
smoothed_relative = (1 - smoothing_factor) * prev_relative + smoothing_factor * current_relative
|
352 |
+
|
353 |
+
# Update smoothed pose
|
354 |
+
smoothed_pose[i] = smoothed_hip + smoothed_relative
|
355 |
+
|
356 |
+
return smoothed_pose
|
357 |
+
|
358 |
+
class AIDancePartner:
|
359 |
+
def __init__(self):
|
360 |
+
self.pose_detector = PoseDetector()
|
361 |
+
self.dance_generator = DanceGenerator()
|
362 |
+
|
363 |
+
def process_video(self, video_path, mode="Sync Partner"):
|
364 |
+
cap = cv2.VideoCapture(video_path)
|
365 |
+
|
366 |
+
# Get video properties
|
367 |
+
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
368 |
+
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
369 |
+
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
370 |
+
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
371 |
+
|
372 |
+
# Create output video writer
|
373 |
+
output_path = 'output_dance.mp4'
|
374 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
375 |
+
out = cv2.VideoWriter(output_path, fourcc, fps,
|
376 |
+
(frame_width * 2, frame_height))
|
377 |
+
|
378 |
+
# Pre-process video to extract all poses
|
379 |
+
print("Processing video...")
|
380 |
+
all_poses = []
|
381 |
+
frame_count = 0
|
382 |
+
|
383 |
+
while cap.isOpened():
|
384 |
+
ret, frame = cap.read()
|
385 |
+
if not ret:
|
386 |
+
break
|
387 |
+
|
388 |
+
pose_landmarks = self.pose_detector.detect_pose(frame)
|
389 |
+
all_poses.append(pose_landmarks)
|
390 |
+
|
391 |
+
frame_count += 1
|
392 |
+
if frame_count % 30 == 0:
|
393 |
+
print(f"Processed {frame_count}/{total_frames} frames")
|
394 |
+
|
395 |
+
# Generate AI dance sequence
|
396 |
+
print("Generating AI dance sequence...")
|
397 |
+
ai_sequence = self.dance_generator.generate_dance_sequence(
|
398 |
+
all_poses,
|
399 |
+
mode,
|
400 |
+
total_frames,
|
401 |
+
(frame_height, frame_width)
|
402 |
+
)
|
403 |
+
|
404 |
+
# Reset video capture and create final video
|
405 |
+
cap.set(cv2.CAP_PROP_POS_FRAMES, 0)
|
406 |
+
frame_count = 0
|
407 |
+
print("Creating final video...")
|
408 |
+
|
409 |
+
while cap.isOpened():
|
410 |
+
ret, frame = cap.read()
|
411 |
+
if not ret:
|
412 |
+
break
|
413 |
+
|
414 |
+
# Get corresponding AI frame
|
415 |
+
ai_frame = ai_sequence[frame_count]
|
416 |
+
|
417 |
+
# Combine frames side by side
|
418 |
+
combined_frame = np.hstack([frame, ai_frame])
|
419 |
+
|
420 |
+
# Write frame to output video
|
421 |
+
out.write(combined_frame)
|
422 |
+
|
423 |
+
frame_count += 1
|
424 |
+
if frame_count % 30 == 0:
|
425 |
+
print(f"Processed {frame_count}/{total_frames} frames")
|
426 |
+
|
427 |
+
# Release resources
|
428 |
+
cap.release()
|
429 |
+
out.release()
|
430 |
+
|
431 |
+
print("Video processing complete!")
|
432 |
+
return output_path
|
433 |
+
|
434 |
+
def upload_and_process_video():
|
435 |
+
"""Function to handle video upload and processing in Colab"""
|
436 |
+
print("Please upload a video file...")
|
437 |
+
uploaded = files.upload()
|
438 |
+
|
439 |
+
if uploaded:
|
440 |
+
video_path = list(uploaded.keys())[0]
|
441 |
+
print(f"Processing video: {video_path}")
|
442 |
+
|
443 |
+
# Create AI Dance Partner instance
|
444 |
+
dance_partner = AIDancePartner()
|
445 |
+
|
446 |
+
# Process video
|
447 |
+
output_path = dance_partner.process_video(video_path)
|
448 |
+
|
449 |
+
# Display the output video
|
450 |
+
def create_video_player(video_path):
|
451 |
+
video_html = f'''
|
452 |
+
<video width="100%" height="480" controls>
|
453 |
+
<source src="data:video/mp4;base64,{base64.b64encode(open(output_path, 'rb').read()).decode()}" type="video/mp4">
|
454 |
+
Your browser does not support the video tag.
|
455 |
+
</video>
|
456 |
+
'''
|
457 |
+
return HTML(video_html)
|
458 |
+
|
459 |
+
print("Displaying processed video...")
|
460 |
+
display(create_video_player(output_path))
|
461 |
+
|
462 |
+
# Option to download the processed video
|
463 |
+
files.download(output_path)
|
464 |
+
|
465 |
+
# Run the application
|
466 |
+
if __name__ == "__main__":
|
467 |
+
print("AI Dance Partner - Video Processing")
|
468 |
+
print("==================================")
|
469 |
+
upload_and_process_video()
|