ombhojane's picture
Update app.py
2cd69df verified
import streamlit as st
from PIL import Image
import tensorflow as tf
import numpy as np
def load_model():
"""Load a pre-trained TensorFlow model for image classification."""
# Use a TensorFlow Hub model or a local TensorFlow model
model = tf.keras.applications.MobileNetV2(
input_shape=(224, 224, 3),
include_top=True,
weights="imagenet"
)
return model
def predict_disease(image_file):
"""Predicts the class of an image using TensorFlow.
Args:
image_file: The uploaded image file.
Returns:
A string representing the predicted class.
"""
try:
# Load the model
model = load_model()
# Process the image
image = Image.open(image_file).convert("RGB").resize((224, 224))
image_array = np.array(image) / 255.0
image_array = np.expand_dims(image_array, axis=0)
# Make prediction
predictions = model.predict(image_array)
predicted_class = np.argmax(predictions[0])
# Get the class label from ImageNet (as an example)
# In a real app, you'd map this to plant diseases
from tensorflow.keras.applications.mobilenet_v2 import decode_predictions
_, label, confidence = decode_predictions(predictions, top=1)[0][0]
return f"{label} (confidence: {confidence:.2f})"
except Exception as e:
return f"Error: {str(e)}"
def main():
"""Creates the Streamlit app."""
st.title("Image Classification App")
st.caption("Note: This is using a general ImageNet model, not a plant disease model")
# Upload an image
image_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
# Predict the class
if image_file is not None:
# Display the image
image = Image.open(image_file)
st.image(image, caption="Uploaded Image", use_column_width=True)
# Add a prediction button
if st.button("Classify Image"):
with st.spinner("Analyzing image..."):
result = predict_disease(image_file)
# Display the prediction
if result.startswith("Error"):
st.error(result)
else:
st.success(f"Prediction: {result}")
if __name__ == "__main__":
main()