File size: 7,263 Bytes
265f62d
 
 
 
 
 
 
 
 
 
 
2e867a3
 
 
265f62d
2e867a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
158264f
2e867a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
265f62d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6dfb83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e867a3
b6dfb83
 
2e867a3
 
b6dfb83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e867a3
b6dfb83
 
2e867a3
b6dfb83
2e867a3
b6dfb83
 
 
 
 
 
 
 
 
 
 
 
 
 
2e867a3
b6dfb83
 
2e867a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
158264f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
# This files contains your custom actions which can be used to run
# custom Python code.
#
# See this guide on how to implement these action:
# https://rasa.com/docs/rasa/custom-actions

from typing import Any, Text, Dict, List
from rasa_sdk import Action, Tracker
from rasa_sdk.events import SlotSet, FollowupAction
from rasa_sdk.executor import CollectingDispatcher
import random
import os
import sys
import openai

# Add "/app/actions" to the sys.path
actions_path = os.path.abspath("/app/actions")
sys.path.insert(0, actions_path)

print("-#-System-path-#-")
for path in sys.path:
    print(path)
print("-#-END-OF-System-path-#-")
# Import search_content.py from /actions folder
from search_content import main_search


# Import api key from secrets
secret_value_0 = os.environ.get("openai")

openai.api_key = secret_value_0
# Provide your OpenAI API key

def generate_openai_response(query, model_engine="text-davinci-003", max_tokens=124, temperature=0.8):
    """Generate a response using the OpenAI API."""
    
    # Run the main function from search_content.py and store the results in a variable
    results = main_search(query)

    # Create context from the results
    context = "".join([f"#{str(i)}" for i in results])[:2014] # Trim the context to 2014 characters - Modify as necessory
    prompt_template = f"Relevant context: {context}\n\n Answer the question in detail: {query}"

    # Generate a response using the OpenAI API
    response = openai.Completion.create(
        engine=model_engine,
        prompt=prompt_template,
        max_tokens=max_tokens,
        temperature=temperature,
        n=1,
        stop=None,
    )

    return response.choices[0].text.strip()

class GetOpenAIResponse(Action):

    def name(self) -> Text:
        return "action_get_response_openai"

    def run(self,
            dispatcher: CollectingDispatcher,
            tracker: Tracker,
            domain: Dict[Text, Any]) -> List[Dict[Text, Any]]:

        # Use OpenAI API to generate a response
        query = tracker.latest_message.get('text')
        response = generate_openai_response(query)
                
        # Output the generated response to user
        dispatcher.utter_message(text=response)
                
class GeneralHelp(Action):
    def name(self) -> Text:
        return "action_general_help"

    def run(self, dispatcher: CollectingDispatcher,
            tracker: Tracker,
            domain: Dict[Text, Any]) -> List[Dict[Text, Any]]:
        
        user_role = tracker.slots.get("user_role", None)
        
        if user_role is None:
            dispatcher.utter_message(text="Sure! Are you a developer or a client representing an organization?")
        else:
            return [FollowupAction("action_help_with_role")]

# Modified from @Rohit Garg's code https://github.com/rohitkg83/Omdena/blob/master/actions/actions.py
class ActionHelpWithRole(Action):

    def name(self) -> Text:
        return "action_help_with_role"

    def run(self,
            dispatcher: CollectingDispatcher,
            tracker: Tracker,
            domain: Dict[Text, Any]) -> List[Dict[Text, Any]]:

        # Get the value of the first_occurrence_user_type slot
        current_user_type = tracker.slots.get("user_role", None)
   
        if current_user_type == 'developer':
            msg = "Thanks a lot for providing the details. You can join one of our local chapter and collaborate on " \
                    "various projects and challenges to Develop Your Skills, Get Recognized, and Make an Impact. Please " \
                    "visit https://omdena.com/community for more details. Do you have any other questions? "

        elif current_user_type == 'client':
            msg = "Thanks a lot for providing the details. With us you can Innovate, Deploy and Scale " \
                    "AI Solutions in Record Time. For more details please visit https://omdena.com/offerings. Do you have any other questions? "
        else:
            msg = "Please enter either developer or client"

        dispatcher.utter_message(text=msg)

class ResetSlotsAction(Action):
    def name(self) -> Text:
        return "action_reset_slots"

    def run(self, dispatcher: CollectingDispatcher,
            tracker: Tracker,
            domain: Dict[Text, Any]) -> List[Dict[Text, Any]]:
        slots_to_reset = ["user_role"]  # Add the names of the slots you want to reset
        events = [SlotSet(slot, None) for slot in slots_to_reset]
        return events

class ActionJoinClassify(Action):

    def name(self) -> Text:
        return "action_join_classify"

    def run(self,
            dispatcher: CollectingDispatcher,
            tracker: Tracker,
            domain: Dict[Text, Any]) -> List[Dict[Text, Any]]:

        # Get the value of the latest intent 
        last_intent = tracker.slots.get("local_chapter", None)

        # Check if the last intent was 'local_chapter'
        if last_intent == 'local chapter':
            dispatcher.utter_message(template="utter_join_chapter")
        else:
            return [FollowupAction("action_get_response_openai")]
            


class ActionEligibilityClassify(Action):

    def name(self) -> Text:
        return "action_eligibility_classify"

    def run(self,
            dispatcher: CollectingDispatcher,
            tracker: Tracker,
            domain: Dict[Text, Any]) -> List[Dict[Text, Any]]:

        # Get the value of the latest intent 
        last_intent = tracker.slots.get("local_chapter", None)

        # Check if the last intent was 'local_chapter'
        if last_intent == 'local chapter':
            dispatcher.utter_message(template="utter_local_chapter_participation_eligibility")
        else:
            return [FollowupAction("action_get_response_openai")]

 
class ActionCostClassify(Action):

    def name(self) -> Text:
        return "action_cost_classify"

    def run(self,
            dispatcher: CollectingDispatcher,
            tracker: Tracker,
            domain: Dict[Text, Any]) -> List[Dict[Text, Any]]:

        # Get the value of the latest intent 
        last_intent = tracker.slots.get("local_chapter", None)

        # Check if the last intent was 'local_chapter'
        if last_intent == 'local chapter':
            dispatcher.utter_message(template="utter_local_chapter_cost")
        else:
            return [FollowupAction("action_get_response_openai")]

class SayHelloWorld(Action):

    def name(self) -> Text:
        return "action_hello_world"

    def run(self,
            dispatcher: CollectingDispatcher,
            tracker: Tracker,
            domain: Dict[Text, Any]) -> List[Dict[Text, Any]]:

        # Use OpenAI API to generate a response
        secret_value_0 = os.environ.get("openai")
        openai.api_key = secret_value_0
        model_engine = "text-davinci-002"
        prompt_template = "Say hello world"

        response = openai.Completion.create(
            engine=model_engine,
            prompt=prompt_template,
            max_tokens=124,
            temperature=0.8,
            n=1,
            stop=None,
        )

        # Output the generated response to user
        generated_text = response.choices[0].text
        dispatcher.utter_message(text=generated_text)