Spaces:
Runtime error
Runtime error
File size: 7,263 Bytes
265f62d 2e867a3 265f62d 2e867a3 158264f 2e867a3 265f62d b6dfb83 2e867a3 b6dfb83 2e867a3 b6dfb83 2e867a3 b6dfb83 2e867a3 b6dfb83 2e867a3 b6dfb83 2e867a3 b6dfb83 2e867a3 158264f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
# This files contains your custom actions which can be used to run
# custom Python code.
#
# See this guide on how to implement these action:
# https://rasa.com/docs/rasa/custom-actions
from typing import Any, Text, Dict, List
from rasa_sdk import Action, Tracker
from rasa_sdk.events import SlotSet, FollowupAction
from rasa_sdk.executor import CollectingDispatcher
import random
import os
import sys
import openai
# Add "/app/actions" to the sys.path
actions_path = os.path.abspath("/app/actions")
sys.path.insert(0, actions_path)
print("-#-System-path-#-")
for path in sys.path:
print(path)
print("-#-END-OF-System-path-#-")
# Import search_content.py from /actions folder
from search_content import main_search
# Import api key from secrets
secret_value_0 = os.environ.get("openai")
openai.api_key = secret_value_0
# Provide your OpenAI API key
def generate_openai_response(query, model_engine="text-davinci-003", max_tokens=124, temperature=0.8):
"""Generate a response using the OpenAI API."""
# Run the main function from search_content.py and store the results in a variable
results = main_search(query)
# Create context from the results
context = "".join([f"#{str(i)}" for i in results])[:2014] # Trim the context to 2014 characters - Modify as necessory
prompt_template = f"Relevant context: {context}\n\n Answer the question in detail: {query}"
# Generate a response using the OpenAI API
response = openai.Completion.create(
engine=model_engine,
prompt=prompt_template,
max_tokens=max_tokens,
temperature=temperature,
n=1,
stop=None,
)
return response.choices[0].text.strip()
class GetOpenAIResponse(Action):
def name(self) -> Text:
return "action_get_response_openai"
def run(self,
dispatcher: CollectingDispatcher,
tracker: Tracker,
domain: Dict[Text, Any]) -> List[Dict[Text, Any]]:
# Use OpenAI API to generate a response
query = tracker.latest_message.get('text')
response = generate_openai_response(query)
# Output the generated response to user
dispatcher.utter_message(text=response)
class GeneralHelp(Action):
def name(self) -> Text:
return "action_general_help"
def run(self, dispatcher: CollectingDispatcher,
tracker: Tracker,
domain: Dict[Text, Any]) -> List[Dict[Text, Any]]:
user_role = tracker.slots.get("user_role", None)
if user_role is None:
dispatcher.utter_message(text="Sure! Are you a developer or a client representing an organization?")
else:
return [FollowupAction("action_help_with_role")]
# Modified from @Rohit Garg's code https://github.com/rohitkg83/Omdena/blob/master/actions/actions.py
class ActionHelpWithRole(Action):
def name(self) -> Text:
return "action_help_with_role"
def run(self,
dispatcher: CollectingDispatcher,
tracker: Tracker,
domain: Dict[Text, Any]) -> List[Dict[Text, Any]]:
# Get the value of the first_occurrence_user_type slot
current_user_type = tracker.slots.get("user_role", None)
if current_user_type == 'developer':
msg = "Thanks a lot for providing the details. You can join one of our local chapter and collaborate on " \
"various projects and challenges to Develop Your Skills, Get Recognized, and Make an Impact. Please " \
"visit https://omdena.com/community for more details. Do you have any other questions? "
elif current_user_type == 'client':
msg = "Thanks a lot for providing the details. With us you can Innovate, Deploy and Scale " \
"AI Solutions in Record Time. For more details please visit https://omdena.com/offerings. Do you have any other questions? "
else:
msg = "Please enter either developer or client"
dispatcher.utter_message(text=msg)
class ResetSlotsAction(Action):
def name(self) -> Text:
return "action_reset_slots"
def run(self, dispatcher: CollectingDispatcher,
tracker: Tracker,
domain: Dict[Text, Any]) -> List[Dict[Text, Any]]:
slots_to_reset = ["user_role"] # Add the names of the slots you want to reset
events = [SlotSet(slot, None) for slot in slots_to_reset]
return events
class ActionJoinClassify(Action):
def name(self) -> Text:
return "action_join_classify"
def run(self,
dispatcher: CollectingDispatcher,
tracker: Tracker,
domain: Dict[Text, Any]) -> List[Dict[Text, Any]]:
# Get the value of the latest intent
last_intent = tracker.slots.get("local_chapter", None)
# Check if the last intent was 'local_chapter'
if last_intent == 'local chapter':
dispatcher.utter_message(template="utter_join_chapter")
else:
return [FollowupAction("action_get_response_openai")]
class ActionEligibilityClassify(Action):
def name(self) -> Text:
return "action_eligibility_classify"
def run(self,
dispatcher: CollectingDispatcher,
tracker: Tracker,
domain: Dict[Text, Any]) -> List[Dict[Text, Any]]:
# Get the value of the latest intent
last_intent = tracker.slots.get("local_chapter", None)
# Check if the last intent was 'local_chapter'
if last_intent == 'local chapter':
dispatcher.utter_message(template="utter_local_chapter_participation_eligibility")
else:
return [FollowupAction("action_get_response_openai")]
class ActionCostClassify(Action):
def name(self) -> Text:
return "action_cost_classify"
def run(self,
dispatcher: CollectingDispatcher,
tracker: Tracker,
domain: Dict[Text, Any]) -> List[Dict[Text, Any]]:
# Get the value of the latest intent
last_intent = tracker.slots.get("local_chapter", None)
# Check if the last intent was 'local_chapter'
if last_intent == 'local chapter':
dispatcher.utter_message(template="utter_local_chapter_cost")
else:
return [FollowupAction("action_get_response_openai")]
class SayHelloWorld(Action):
def name(self) -> Text:
return "action_hello_world"
def run(self,
dispatcher: CollectingDispatcher,
tracker: Tracker,
domain: Dict[Text, Any]) -> List[Dict[Text, Any]]:
# Use OpenAI API to generate a response
secret_value_0 = os.environ.get("openai")
openai.api_key = secret_value_0
model_engine = "text-davinci-002"
prompt_template = "Say hello world"
response = openai.Completion.create(
engine=model_engine,
prompt=prompt_template,
max_tokens=124,
temperature=0.8,
n=1,
stop=None,
)
# Output the generated response to user
generated_text = response.choices[0].text
dispatcher.utter_message(text=generated_text) |