# app.py import gradio as gr import pandas as pd # Import pandas from ocr_request import ocr_request import io def process_file(files): response_arr = [] # Send the uploaded file to the function from ocr_request.py for file in files: response = ocr_request(file.name) response_arr.append(response) print("Main file :", response_arr) #i= [[{'invoice_number': '349136', 'product_description': '1ST FLOOR WALLS', 'predicted_material': 'Framing', 'confidence': 0.8}, {'invoice_number': '349136', 'product_description': "11.875 X 16 ' Pro Lam 2.0 LVL 1.75 ( 7 @ 16 ' , 4 @\n8 ' )", 'predicted_material': 'Framing', 'confidence': 0.9}, {'invoice_number': '349136', 'product_description': "COLUMN\n11.875 X 10 ' Pro Lam 2.0 LVL 1.75", 'predicted_material': 'Framing', 'confidence': 0.9}, {'invoice_number': '3495565136', 'product_description': "Power Column 3 1/2 X 5 1/2 - 08 '", 'predicted_material': 'Framing', 'confidence': 0.9}],[{'invoice_number': '349136', 'product_description': ' FLOOR WALLS', 'predicted_material': 'Framing', 'confidence': 0.8}, {'invoice_number': '349136', 'product_description': "11.875 X 16 ' Pro Lam 2.0 LVL 1.75 ( 7 @ 16 ' , 4 @\n8 ' )", 'predicted_material': 'Framing', 'confidence': 0.9}, {'invoice_number': '349136', 'product_description': "COLUMN\n11.875 X 10 ' Pro Lam 2.0 LVL 1.75", 'predicted_material': 'Framing', 'confidence': 0.9}, {'invoice_number': '349136', 'product_description': "Power Column 3 1/2 X 5 1/2 - 08 '", 'predicted_material': 'Framing', 'confidence': 0.9}]] flat_list = [] for item in response_arr: invoice_number = item['invoice_number'] # Extracting product descriptions products = item.get('predictions', []) or item.get('product_description', []) for product in products: # Rename 'description' key to 'product_description' for uniformity across all products product_description = product.get('product_description', product.get('description')) predicted_material = product['predicted_material'] confidence = product['confidence'] flat_list.append({ 'invoice_number': invoice_number, 'product_description': product_description, 'predicted_material': predicted_material, 'confidence': confidence }) df = pd.DataFrame(flat_list) print("Df final : ", df) # Save the dataframe to a CSV in-memory result_csv = df.to_csv(index=False) csv_filename = "categories.csv" with open(csv_filename, "w") as f: f.write(result_csv) return df,csv_filename # Gradio will display this as a table interface = gr.Interface(fn=process_file, inputs=gr.inputs.File(label="Upload a File", file_count='multiple'), outputs=["dataframe",gr.outputs.File(label="Download CSV")]) # Specify "dataframe" as output type interface.launch(share=True)