FindYourTwins / app.py
omerXfaruq's picture
Update app.py
3bc904e verified
raw
history blame
2.53 kB
import gradio as gr
import os
import torchvision.transforms as T
from upstash_vector import Index
from datasets import load_dataset
from transformers import AutoFeatureExtractor, AutoModel
index = Index.from_env()
model_ckpt = "google/vit-base-patch16-224-in21k"
extractor = AutoFeatureExtractor.from_pretrained(model_ckpt)
model = AutoModel.from_pretrained(model_ckpt)
hidden_dim = model.config.hidden_size
dataset = load_dataset("BounharAbdelaziz/Face-Aging-Dataset")
# Data transformation chain.
transformation_chain = T.Compose(
[
T.Resize(extractor.size["height"]),
T.CenterCrop(extractor.size["height"]),
T.ToTensor(),
T.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
]
)
with gr.Blocks() as demo:
gr.Markdown(
"""
# Find Your Twins
Upload your face and find the most similar people from the X dataset. Powered by [Upstash Vector](https://upstash.com) 🚀
"""
)
with gr.Tab("Basic"):
with gr.Row():
with gr.Column(scale=1):
input_image = gr.Image(type="pil")
with gr.Column(scale=3):
output_image = gr.Gallery(height=800)
@input_image.upload(inputs=input_image, outputs=output_image)
def find_similar_faces(image):
t_image = transformation_chain(image)
inputs = extractor(images=t_image, return_tensors="pt")
outputs = model(**inputs)
embed = outputs.last_hidden_state[0][0]
result = index.query(vector=embed, top_k=4)
return [dataset["train"][int(vector.id)]["image"] for vector in result]
with gr.Tab("Advanced"):
with gr.Row():
with gr.Column(scale=1):
adv_input_image = gr.Image(type="pil")
adv_image_count = gr.Number(9, label="Image Count")
with gr.Column(scale=3):
adv_output_image = gr.Gallery(height=1000)
@adv_input_image.upload(inputs=[adv_input_image, adv_image_count], outputs=[adv_output_image])
def find_similar_faces(image, count):
t_image = transformation_chain(image)
inputs = extractor(images=t_image, return_tensors="pt")
outputs = model(**inputs)
embed = outputs.last_hidden_state[0][0]
result = index.query(vector=embed, top_k=max(1, min(19, count)))
return [dataset["train"][int(vector.id)]["image"] for vector in result]
if __name__ == "__main__":
demo.launch(debug=True)