Spaces:
Runtime error
Runtime error
import gradio as gr | |
import os | |
import torchvision.transforms as T | |
from upstash_vector import Index | |
from datasets import load_dataset | |
from transformers import AutoFeatureExtractor, AutoModel | |
index = Index.from_env() | |
model_ckpt = "google/vit-base-patch16-224-in21k" | |
extractor = AutoFeatureExtractor.from_pretrained(model_ckpt) | |
model = AutoModel.from_pretrained(model_ckpt) | |
hidden_dim = model.config.hidden_size | |
dataset = load_dataset("BounharAbdelaziz/Face-Aging-Dataset") | |
# Data transformation chain. | |
transformation_chain = T.Compose( | |
[ | |
T.Resize(extractor.size["height"]), | |
T.CenterCrop(extractor.size["height"]), | |
T.ToTensor(), | |
T.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), | |
] | |
) | |
with gr.Blocks() as demo: | |
gr.Markdown( | |
""" | |
# Find Your Twins | |
Upload your face and find the most similar people from the X dataset. Powered by [Upstash Vector](https://upstash.com) 🚀 | |
""" | |
) | |
with gr.Tab("Basic"): | |
with gr.Row(): | |
with gr.Column(scale=1): | |
input_image = gr.Image(type="pil") | |
with gr.Column(scale=3): | |
output_image = gr.Gallery(height=800) | |
def find_similar_faces(image): | |
t_image = transformation_chain(image) | |
inputs = extractor(images=t_image, return_tensors="pt") | |
outputs = model(**inputs) | |
embed = outputs.last_hidden_state[0][0] | |
result = index.query(vector=embed, top_k=4) | |
return [dataset["train"][int(vector.id)]["image"] for vector in result] | |
with gr.Tab("Advanced"): | |
with gr.Row(): | |
with gr.Column(scale=1): | |
adv_input_image = gr.Image(type="pil") | |
adv_image_count = gr.Number(9, label="Image Count") | |
with gr.Column(scale=3): | |
adv_output_image = gr.Gallery(height=1000) | |
def find_similar_faces(image, count): | |
t_image = transformation_chain(image) | |
inputs = extractor(images=t_image, return_tensors="pt") | |
outputs = model(**inputs) | |
embed = outputs.last_hidden_state[0][0] | |
result = index.query(vector=embed, top_k=max(1, min(19, count))) | |
return [dataset["train"][int(vector.id)]["image"] for vector in result] | |
if __name__ == "__main__": | |
demo.launch(debug=True) | |