FindYourTwins / app.py
omerXfaruq's picture
Update app.py
9e0ec3b verified
import gradio as gr
from upstash_vector import AsyncIndex
from transformers import AutoFeatureExtractor, AutoModel
from datasets import load_dataset
index = AsyncIndex.from_env()
model_ckpt = "google/vit-base-patch16-224-in21k"
extractor = AutoFeatureExtractor.from_pretrained(model_ckpt)
model = AutoModel.from_pretrained(model_ckpt)
hidden_dim = model.config.hidden_size
dataset = load_dataset("BounharAbdelaziz/Face-Aging-Dataset")
TOP_K = 1000
BASE_COUNT=4
MAX_COUNT = 10
with gr.Blocks() as demo:
gr.Markdown(
"""
# Find Your Twins
Upload your face and find the most similar faces from [Face Aging Dataset](https://huggingface.co/datasets/BounharAbdelaziz/Face-Aging-Dataset) using Google's [VIT](https://huggingface.co/google/vit-base-patch16-224-in21k) model. For best results please use 1x1 ratio face images, take a look at examples. Also increasing count in the advanced section results with more accurate searches. Disclaimer, this demo doesn't find your twins :), it finds similar face parts, shapes, features(nose, cheek, face, forehead shapes) that are encoded in the model. The Vector similarity search is powered by [Upstash Vector](https://upstash.com) 🚀. You can check our blog [post](https://huggingface.co/blog/omerXfaruq/serverless-image-similarity-with-upstash-vector) to learn more.
"""
)
with gr.Tab("Basic"):
with gr.Row():
with gr.Column(scale=1):
input_image = gr.Image(type="pil")
with gr.Column(scale=2):
output_images = gr.Gallery()
@input_image.change(inputs=input_image, outputs=output_images)
async def find_similar_faces(image):
if image is None:
return None
inputs = extractor(images=image, return_tensors="pt")
outputs = model(**inputs)
embed = outputs.last_hidden_state[0][0]
result = await index.query(vector=embed.tolist(), top_k=TOP_K)
return [dataset["train"][int(vector.id)]["image"] for vector in result[:BASE_COUNT]]
gr.Examples(
examples=[
dataset["train"][6]["image"],
dataset["train"][7]["image"],
dataset["train"][8]["image"],
],
inputs=input_image,
outputs=output_images,
fn=find_similar_faces,
cache_examples=False,
)
with gr.Tab("Advanced"):
with gr.Row():
with gr.Column(scale=1):
adv_input_image = gr.Image(type="pil")
adv_image_count = gr.Slider(1, MAX_COUNT, BASE_COUNT, label="Image Count")
adv_button = gr.Button("Submit")
with gr.Column(scale=2):
adv_output_images = gr.Gallery()
async def find_similar_faces(image, count):
if image is None:
return None
inputs = extractor(images=image, return_tensors="pt")
outputs = model(**inputs)
embed = outputs.last_hidden_state[0][0]
result = await index.query(
vector=embed.tolist(), top_k=TOP_K
)
return [dataset["train"][int(vector.id)]["image"] for vector in result[:int(count)]]
adv_button.click(
fn=find_similar_faces,
inputs=[adv_input_image, adv_image_count],
outputs=[adv_output_images],
)
adv_input_image.change(
fn=find_similar_faces,
inputs=[adv_input_image, adv_image_count],
outputs=[adv_output_images],
)
gr.Examples(
examples=[
[dataset["train"][6]["image"], BASE_COUNT],
[dataset["train"][7]["image"], BASE_COUNT],
[dataset["train"][8]["image"], BASE_COUNT],
],
inputs=[adv_input_image, adv_image_count],
outputs=adv_output_images,
fn=find_similar_faces,
cache_examples=False,
)
if __name__ == "__main__":
demo.queue(default_concurrency_limit=40)
demo.launch()