omerXfaruq commited on
Commit
fba895a
·
1 Parent(s): 6c40b92
.idea/FindYourTwins.iml ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ <?xml version="1.0" encoding="UTF-8"?>
2
+ <module type="PYTHON_MODULE" version="4">
3
+ <component name="NewModuleRootManager">
4
+ <content url="file://$MODULE_DIR$" />
5
+ <orderEntry type="inheritedJdk" />
6
+ <orderEntry type="sourceFolder" forTests="false" />
7
+ </component>
8
+ </module>
.idea/inspectionProfiles/profiles_settings.xml ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ <component name="InspectionProjectProfileManager">
2
+ <settings>
3
+ <option name="USE_PROJECT_PROFILE" value="false" />
4
+ <version value="1.0" />
5
+ </settings>
6
+ </component>
.idea/modules.xml ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ <?xml version="1.0" encoding="UTF-8"?>
2
+ <project version="4">
3
+ <component name="ProjectModuleManager">
4
+ <modules>
5
+ <module fileurl="file://$PROJECT_DIR$/.idea/FindYourTwins.iml" filepath="$PROJECT_DIR$/.idea/FindYourTwins.iml" />
6
+ </modules>
7
+ </component>
8
+ </project>
__pycache__/app.cpython-310.pyc ADDED
Binary file (3.13 kB). View file
 
app.py CHANGED
@@ -18,7 +18,7 @@ with gr.Blocks() as demo:
18
  """
19
  # Find Your Twins
20
 
21
- Upload your face and find the most similar faces from [Face Aging Dataset](https://huggingface.co/datasets/BounharAbdelaziz/Face-Aging-Dataset) using Google's [VIT](https://huggingface.co/google/vit-base-patch16-224-in21k) model. For best results please use 1x1 ratio face images, take a look at examples. Also increasing count in the advanced section results with more accurate searches. The Vector similarity search is powered by [Upstash Vector](https://upstash.com) 🚀. You can check our blog [post](https://huggingface.co/blog/omerXfaruq/serverless-image-similarity-with-upstash-vector) to learn more.
22
  """
23
  )
24
 
 
18
  """
19
  # Find Your Twins
20
 
21
+ Upload your face and find the most similar faces from [Face Aging Dataset](https://huggingface.co/datasets/BounharAbdelaziz/Face-Aging-Dataset) using Google's [VIT](https://huggingface.co/google/vit-base-patch16-224-in21k) model. For best results please use 1x1 ratio face images, take a look at examples. Also increasing count in the advanced section results with more accurate searches. Disclaimer, this demo doesn't find your twins :), it finds similar face parts, shapes, features(nose, cheek, face, forehead shapes) that are encoded in the model. The Vector similarity search is powered by [Upstash Vector](https://upstash.com) 🚀. You can check our blog [post](https://huggingface.co/blog/omerXfaruq/serverless-image-similarity-with-upstash-vector) to learn more.
22
  """
23
  )
24