import gradio as gr import os from torchvision.transforms import Resize from upstash_vector import Index index = Index.from_env() resize_transform = Resize((250,250)) from transformers import AutoFeatureExtractor, AutoModel model_ckpt = "google/vit-base-patch16-224-in21k" extractor = AutoFeatureExtractor.from_pretrained(model_ckpt) model = AutoModel.from_pretrained(model_ckpt) hidden_dim = model.config.hidden_size from datasets import load_dataset dataset = load_dataset("HengJi/human_faces") with gr.Blocks() as demo: gr.Markdown( """ # Find Your Twins Upload your face and find the most similar people from the X dataset. Powered by [Upstash Vector](https://upstash.com) 🚀 """ ) with gr.Tab("Basic"): with gr.Row(): with gr.Column(scale=1): input_image = gr.Image(type="pil") with gr.Column(scale=3): output_image = gr.Gallery() @input_image.upload(inputs=input_image, outputs=output_image) def find_similar_faces(image): resized_image = resize_transform(image) inputs = extractor(images=image, return_tensors="pt") outputs = model(**inputs) embed = outputs.last_hidden_state[0][0] result = index.query(vector=embed.tolist(), top_k=3) return[dataset["train"][int(vector.id[3:])]["image"] for vector in result] with gr.Tab("Advanced"): with gr.Row(): with gr.Column(scale=1): adv_input_image = gr.Image(type="pil") adv_image_count = gr.Number(9, label="Image Count") with gr.Column(scale=3): adv_output_image = gr.Gallery(height=1000) @adv_input_image.upload(inputs=[adv_input_image, adv_image_count], outputs=[adv_output_image]) def find_similar_faces(image, count): resized_image = resize_transform(image) inputs = extractor(images=image, return_tensors="pt") outputs = model(**inputs) embed = outputs.last_hidden_state[0][0] result = index.query(vector=embed.tolist(), top_k=min(count, 9)) return[dataset["train"][int(vector.id[3:])]["image"] for vector in result] if __name__ == "__main__": demo.launch(debug=True)