File size: 25,439 Bytes
b91146d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
import streamlit as st
from typing import List, Dict
import httpx
from pathlib import Path
import os
from dotenv import load_dotenv
import json
import numpy as np
from pymongo import MongoClient
from openai import OpenAI
from datetime import datetime
import asyncio
import pandas as pd

# Load environment variables
load_dotenv()
PERPLEXITY_API_KEY = os.getenv("PERPLEXITY_KEY")
MONGODB_URI = os.getenv("MONGO_URI")
OPENAI_API_KEY = os.getenv("OPENAI_KEY")

# Initialize MongoDB client
client = MongoClient(MONGODB_URI)
db = client["document_analysis"]
vectors_collection = db["document_vectors"]

# Initialize OpenAI client
openai_client = OpenAI(api_key=OPENAI_API_KEY)


class GoalAnalyzer:
    def __init__(self):
        self.api_key = PERPLEXITY_API_KEY
        self.base_url = "https://api.perplexity.ai/chat/completions"

    def clean_json_string(self, content: str) -> str:
        """Clean and extract valid JSON from string"""
        # Remove markdown formatting
        if "```json" in content:
            content = content.split("```json")[1].split("```")[0]
        elif "```" in content:
            content = content.split("```")[1]

        # Find the JSON object boundaries
        start_idx = content.find("{")
        end_idx = content.rfind("}") + 1

        if start_idx != -1 and end_idx > 0:
            content = content[start_idx:end_idx]

        # Clean up common issues
        content = content.strip()
        content = content.replace("\n", "")
        content = content.replace("'", '"')

        return content

    async def get_perplexity_analysis(self, text: str, goal: str) -> Dict:
        """Get analysis from Perplexity API"""
        headers = {
            "Authorization": f"Bearer {self.api_key}",
            "Content-Type": "application/json",
        }

        prompt = f"""

        Analyze the following text in context of the goal: {goal}

        

        Text: {text}

        

        Provide analysis in the following JSON format:

        {{

            "themes": ["theme1", "theme2"],

            "subthemes": {{"theme1": ["subtheme1", "subtheme2"], "theme2": ["subtheme3"]}},

            "keywords": ["keyword1", "keyword2"],

            "relevance_score": 0-100

        }}

        """

        try:
            async with httpx.AsyncClient() as client:
                payload = {
                    "model": "llama-3.1-sonar-small-128k-chat",  # Updated to supported model
                    "messages": [
                        {
                            "role": "system",
                            "content": "You are an AI assistant that analyzes documents and provides structured analysis.",
                        },
                        {"role": "user", "content": prompt},
                    ],
                    "max_tokens": 1024,
                }

                # Debug info using expander
                with st.expander("Debug Info", expanded=False):
                    st.write("Request payload:", payload)

                response = await client.post(
                    self.base_url, headers=headers, json=payload, timeout=30.0
                )

                # Debug response info
                with st.expander("Response Info", expanded=False):
                    st.write("Response status:", response.status_code)
                    st.write("Response headers:", dict(response.headers))
                    st.write("Response content:", response.text)

                if response.status_code != 200:
                    error_detail = (
                        response.json() if response.content else "No error details"
                    )
                    raise Exception(
                        f"API returned status code {response.status_code}. Details: {error_detail}"
                    )

                result = response.json()
                content = (
                    result.get("choices", [{}])[0].get("message", {}).get("content", "")
                )

                # Clean and parse JSON
                cleaned_content = self.clean_json_string(content)

                try:
                    analysis = json.loads(cleaned_content)

                    # Validate required fields
                    required_fields = [
                        "themes",
                        "subthemes",
                        "keywords",
                        "relevance_score",
                    ]
                    for field in required_fields:
                        if field not in analysis:
                            analysis[field] = [] if field != "relevance_score" else 0

                    return analysis

                except json.JSONDecodeError as e:
                    st.error(f"JSON parsing error: {str(e)}")
                    st.error(f"Failed content: {cleaned_content}")
                    return {
                        "themes": ["Error parsing themes"],
                        "subthemes": {"Error": ["Failed to parse subthemes"]},
                        "keywords": ["parsing-error"],
                        "relevance_score": 0,
                    }

        except Exception as e:
            st.error(f"API Error: {str(e)}")
            return None

    def extract_text_from_file(self, file) -> str:
        """Extract text content from uploaded file"""
        try:
            text = ""
            file_type = file.type

            if file_type == "text/plain":
                text = file.getvalue().decode("utf-8")
            elif file_type == "application/pdf":
                import PyPDF2

                pdf_reader = PyPDF2.PdfReader(file)
                for page in pdf_reader.pages:
                    text += page.extract_text()
            elif (
                file_type
                == "application/vnd.openxmlformats-officedocument.wordprocessingml.document"
            ):
                import docx

                doc = docx.Document(file)
                text = " ".join([paragraph.text for paragraph in doc.paragraphs])

            return text
        except Exception as e:
            st.error(f"Error extracting text: {str(e)}")
            return ""


class DocumentVectorizer:
    def __init__(self):
        self.model = "text-embedding-ada-002"
        self.client = MongoClient(MONGODB_URI)
        self.db = self.client["document_analysis"]
        self.vectors_collection = self.db["document_vectors"]

        # Create vector search index if it doesn't exist
        try:
            self.vectors_collection.create_index(
                [("vector", "2dsphere")],  # Changed to 2dsphere for vector indexing
                {
                    "vectorSearchConfig": {
                        "dimensions": 1536,  # OpenAI embedding dimensions
                        "similarity": "cosine",
                    }
                },
            )
        except Exception as e:
            st.warning(f"Vector index may already exist")

    def get_embedding(self, text: str) -> list:
        """Get embedding vector for text using OpenAI"""
        try:
            response = openai_client.embeddings.create(model=self.model, input=text)
            return response.data[0].embedding
        except Exception as e:
            st.error(f"Error getting embedding: {str(e)}")
            return None

    # Add this method to DocumentVectorizer class
    def vector_exists(self, doc_name: str) -> bool:
        """Check if vector exists for document"""
        return self.vectors_collection.count_documents({"name": doc_name}) > 0

    # Update store_vector method in DocumentVectorizer class
    def store_vector(self, doc_name: str, vector: list, text: str, goal: str = None):
        """Store document/goal vector in MongoDB using upsert"""
        try:
            vector_doc = {
                "name": doc_name,
                "vector": vector,
                "text": text,
                "type": "document" if goal is None else "goal",
                "goal": goal,
                "updated_at": datetime.utcnow(),
            }

            # Use update_one with upsert
            self.vectors_collection.update_one(
                {"name": doc_name},
                {"$set": vector_doc, "$setOnInsert": {"created_at": datetime.utcnow()}},
                upsert=True,
            )

        except Exception as e:
            st.error(f"Error storing vector: {str(e)}")

    # Update vector_search method in DocumentVectorizer class
    def vector_search(self, query_vector: List[float], limit: int = 5) -> List[Dict]:
        """Search for similar documents using vector similarity"""
        try:
            # Get all documents
            documents = list(self.vectors_collection.find({"type": "document"}))

            # Calculate similarities
            similarities = []
            for doc in documents:
                similarity = self.calculate_similarity(query_vector, doc["vector"])
                similarities.append(
                    {
                        "name": doc["name"],
                        "text": doc["text"],
                        "similarity": similarity,  # Keep as float
                        "similarity_display": f"{similarity*100:.1f}%",  # Add display version
                    }
                )

            # Sort by similarity and get top k
            sorted_docs = sorted(
                similarities,
                key=lambda x: x["similarity"],  # Sort by float value
                reverse=True,
            )[:limit]

            return sorted_docs

        except Exception as e:
            st.error(f"Vector search error: {str(e)}")
            return []

    def find_similar_documents(self, text: str, limit: int = 5) -> List[Dict]:
        """Find similar documents for given text"""
        vector = self.get_embedding(text)
        if vector:
            return self.vector_search(vector, limit)
        return []

    def calculate_similarity(self, vector1: list, vector2: list) -> float:
        """Calculate cosine similarity between two vectors"""
        return np.dot(vector1, vector2) / (
            np.linalg.norm(vector1) * np.linalg.norm(vector2)
        )


def display_analysis_results(analysis: Dict):
    """Display analysis results in Streamlit UI"""
    if not analysis:
        return

    # Display Themes
    st.subheader("Themes")
    for theme in analysis.get("themes", []):
        with st.expander(f"🎯 {theme}"):
            # Display subthemes for this theme
            subthemes = analysis.get("subthemes", {}).get(theme, [])
            if subthemes:
                st.write("**Subthemes:**")
                for subtheme in subthemes:
                    st.write(f"- {subtheme}")

    # Display Keywords
    st.subheader("Keywords")
    keywords = analysis.get("keywords", [])
    st.write(" | ".join([f"πŸ”‘ {keyword}" for keyword in keywords]))

    # Display Relevance Score
    score = analysis.get("relevance_score", 0)
    st.metric("Relevance Score", f"{score}%")


def display_analyst_dashboard():
    st.title("Multi-Goal Document Analysis")

    with st.sidebar:
        st.markdown("### Input Section")
        tab1, tab2 = st.tabs(["Document Analysis", "Similarity Search"])
        # tab1, tab2 = st.tabs(["Document Analysis", "Similarity Search"])

        with tab1:
            # Multiple goals input
            num_goals = st.number_input("Number of goals:", min_value=1, value=1)
            goals = []
            for i in range(num_goals):
                goal = st.text_area(f"Goal {i+1}:", key=f"goal_{i}", height=100)
                if goal:
                    goals.append(goal)

            uploaded_files = st.file_uploader(
                "Upload documents",
                accept_multiple_files=True,
                type=["txt", "pdf", "docx"],
            )
            analyze_button = (
                st.button("Analyze Documents") if goals and uploaded_files else None
            )

        with tab2:
            # Keep existing similarity search tab
            search_text = st.text_area("Enter text to find similar documents:")
            search_limit = st.slider("Number of results", 1, 10, 5)
            search_button = st.button("Search Similar") if search_text else None

        if st.button("Logout", use_container_width=True):
            for key in st.session_state.keys():
                del st.session_state[key]
            st.rerun()

    if analyze_button:
        analyzer = GoalAnalyzer()
        vectorizer = DocumentVectorizer()

        # Store vectors
        doc_vectors = {}
        goal_vectors = {}

        # Process goals first
        with st.spinner("Processing goals..."):
            for i, goal in enumerate(goals):
                vector = vectorizer.get_embedding(goal)
                if vector:
                    goal_vectors[f"Goal {i+1}"] = vector
                    vectorizer.store_vector(f"Goal {i+1}", vector, goal, goal)

        # Process documents
        with st.spinner("Processing documents..."):
            for file in uploaded_files:
                st.markdown(f"### Analysis for {file.name}")

                if vectorizer.vector_exists(file.name):
                    st.info(f"Vector already exists for {file.name}")
                    existing_doc = vectorizer.vectors_collection.find_one(
                        {"name": file.name}
                    )
                    doc_vectors[file.name] = existing_doc["vector"]
                else:
                    text = analyzer.extract_text_from_file(file)
                    if not text:
                        st.warning(f"Could not extract text from {file.name}")
                        continue

                    vector = vectorizer.get_embedding(text)
                    if vector:
                        doc_vectors[file.name] = vector
                        vectorizer.store_vector(file.name, vector, text)

                # Display goal similarities
                st.subheader("Goal Relevance Scores")
                col1, col2 = st.columns([1, 2])

                with col1:
                    for goal_name, goal_vector in goal_vectors.items():
                        similarity = (
                            vectorizer.calculate_similarity(
                                doc_vectors[file.name], goal_vector
                            )
                            * 100
                        )
                        st.metric(f"{goal_name}", f"{similarity:.1f}%")

                with col2:
                    # Get analysis for all goals combined
                    analysis = asyncio.run(
                        analyzer.get_perplexity_analysis(text, " | ".join(goals))
                    )
                    display_analysis_results(analysis)

                st.divider()

            # Document similarity matrix
            if len(doc_vectors) > 1:
                st.markdown("### Document Similarity Matrix")
                files = list(doc_vectors.keys())
                similarity_matrix = []

                for file1 in files:
                    row = []
                    for file2 in files:
                        similarity = vectorizer.calculate_similarity(
                            doc_vectors[file1], doc_vectors[file2]
                        )
                        row.append(similarity)
                    similarity_matrix.append(row)

                df = pd.DataFrame(similarity_matrix, columns=files, index=files)
                st.dataframe(df.style.background_gradient(cmap="RdYlGn"))

                # Add goal-document similarity matrix
                st.markdown("### Goal-Document Similarity Matrix")
                goal_doc_matrix = []
                goal_names = list(goal_vectors.keys())

                for file in files:
                    row = []
                    for goal in goal_names:
                        similarity = vectorizer.calculate_similarity(
                            doc_vectors[file], goal_vectors[goal]
                        )
                        row.append(similarity)
                    goal_doc_matrix.append(row)

                df_goals = pd.DataFrame(
                    goal_doc_matrix, columns=goal_names, index=files
                )
                st.dataframe(df_goals.style.background_gradient(cmap="RdYlGn"))

    # Keep existing similarity search functionality
    elif search_button:
        vectorizer = DocumentVectorizer()
        with st.spinner("Searching similar documents..."):
            query_vector = vectorizer.get_embedding(search_text)
            if query_vector:
                similar_docs = vectorizer.vector_search(query_vector, search_limit)

                if similar_docs:
                    st.markdown("### Similar Documents Found")

                    # Create DataFrame with numeric similarities
                    df = pd.DataFrame(similar_docs)

                    # Apply gradient to numeric column
                    styled_df = df[["name", "similarity"]].style.background_gradient(
                        cmap="RdYlGn", subset=["similarity"]
                    )

                    # Format display after styling
                    styled_df = styled_df.format({"similarity": "{:.1%}"})

                    st.dataframe(styled_df)

                    # Show document contents
                    for doc in similar_docs:
                        with st.expander(
                            f"πŸ“„ {doc['name']} (Similarity: {doc['similarity_display']})"
                        ):
                            st.text(
                                doc["text"][:20] + "..."
                                if len(doc["text"]) > 20
                                else doc["text"]
                            )
                else:
                    st.info("No similar documents found")
            else:
                st.error("Could not process search query")


def main():
    st.title("Multi-Goal Document Analysis")

    with st.sidebar:
        st.markdown("### Input Section")
        tab1, tab2 = st.tabs(["Document Analysis", "Similarity Search"])
        # tab1, tab2 = st.tabs(["Document Analysis", "Similarity Search"])

        with tab1:
            # Multiple goals input
            num_goals = st.number_input("Number of goals:", min_value=1, value=1)
            goals = []
            for i in range(num_goals):
                goal = st.text_area(f"Goal {i+1}:", key=f"goal_{i}", height=100)
                if goal:
                    goals.append(goal)

            uploaded_files = st.file_uploader(
                "Upload documents",
                accept_multiple_files=True,
                type=["txt", "pdf", "docx"],
            )
            analyze_button = (
                st.button("Analyze Documents") if goals and uploaded_files else None
            )

        with tab2:
            # Keep existing similarity search tab
            search_text = st.text_area("Enter text to find similar documents:")
            search_limit = st.slider("Number of results", 1, 10, 5)
            search_button = st.button("Search Similar") if search_text else None

    if analyze_button:
        analyzer = GoalAnalyzer()
        vectorizer = DocumentVectorizer()

        # Store vectors
        doc_vectors = {}
        goal_vectors = {}

        # Process goals first
        with st.spinner("Processing goals..."):
            for i, goal in enumerate(goals):
                vector = vectorizer.get_embedding(goal)
                if vector:
                    goal_vectors[f"Goal {i+1}"] = vector
                    vectorizer.store_vector(f"Goal {i+1}", vector, goal, goal)

        # Process documents
        with st.spinner("Processing documents..."):
            for file in uploaded_files:
                st.markdown(f"### Analysis for {file.name}")

                if vectorizer.vector_exists(file.name):
                    st.info(f"Vector already exists for {file.name}")
                    existing_doc = vectorizer.vectors_collection.find_one(
                        {"name": file.name}
                    )
                    doc_vectors[file.name] = existing_doc["vector"]
                else:
                    text = analyzer.extract_text_from_file(file)
                    if not text:
                        st.warning(f"Could not extract text from {file.name}")
                        continue

                    vector = vectorizer.get_embedding(text)
                    if vector:
                        doc_vectors[file.name] = vector
                        vectorizer.store_vector(file.name, vector, text)

                # Display goal similarities
                st.subheader("Goal Relevance Scores")
                col1, col2 = st.columns([1, 2])

                with col1:
                    for goal_name, goal_vector in goal_vectors.items():
                        similarity = (
                            vectorizer.calculate_similarity(
                                doc_vectors[file.name], goal_vector
                            )
                            * 100
                        )
                        st.metric(f"{goal_name}", f"{similarity:.1f}%")

                with col2:
                    # Get analysis for all goals combined
                    analysis = asyncio.run(
                        analyzer.get_perplexity_analysis(text, " | ".join(goals))
                    )
                    display_analysis_results(analysis)

                st.divider()

            # Document similarity matrix
            if len(doc_vectors) > 1:
                st.markdown("### Document Similarity Matrix")
                files = list(doc_vectors.keys())
                similarity_matrix = []

                for file1 in files:
                    row = []
                    for file2 in files:
                        similarity = vectorizer.calculate_similarity(
                            doc_vectors[file1], doc_vectors[file2]
                        )
                        row.append(similarity)
                    similarity_matrix.append(row)

                df = pd.DataFrame(similarity_matrix, columns=files, index=files)
                st.dataframe(df.style.background_gradient(cmap="RdYlGn"))

                # Add goal-document similarity matrix
                st.markdown("### Goal-Document Similarity Matrix")
                goal_doc_matrix = []
                goal_names = list(goal_vectors.keys())

                for file in files:
                    row = []
                    for goal in goal_names:
                        similarity = vectorizer.calculate_similarity(
                            doc_vectors[file], goal_vectors[goal]
                        )
                        row.append(similarity)
                    goal_doc_matrix.append(row)

                df_goals = pd.DataFrame(
                    goal_doc_matrix, columns=goal_names, index=files
                )
                st.dataframe(df_goals.style.background_gradient(cmap="RdYlGn"))

    # Keep existing similarity search functionality
    elif search_button:
        vectorizer = DocumentVectorizer()
        with st.spinner("Searching similar documents..."):
            query_vector = vectorizer.get_embedding(search_text)
            if query_vector:
                similar_docs = vectorizer.vector_search(query_vector, search_limit)

                if similar_docs:
                    st.markdown("### Similar Documents Found")

                    # Create DataFrame with numeric similarities
                    df = pd.DataFrame(similar_docs)

                    # Apply gradient to numeric column
                    styled_df = df[["name", "similarity"]].style.background_gradient(
                        cmap="RdYlGn", subset=["similarity"]
                    )

                    # Format display after styling
                    styled_df = styled_df.format({"similarity": "{:.1%}"})

                    st.dataframe(styled_df)

                    # Show document contents
                    for doc in similar_docs:
                        with st.expander(
                            f"πŸ“„ {doc['name']} (Similarity: {doc['similarity_display']})"
                        ):
                            st.text(
                                doc["text"][:20] + "..."
                                if len(doc["text"]) > 20
                                else doc["text"]
                            )
                else:
                    st.info("No similar documents found")
            else:
                st.error("Could not process search query")


if __name__ == "__main__":
    main()