Spaces:
Build error
Build error
File size: 7,279 Bytes
b91146d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
import streamlit as st
import pandas as pd
import networkx as nx
from bokeh.models import HoverTool
from bokeh.plotting import figure, from_networkx
import requests
import json
import google.generativeai as genai
PERPLEXITY_API_KEY = "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"
PERPLEXITY_API_URL = "https://api.perplexity.ai/chat/completions"
def extract_edges(keywords):
keywords = [kw.strip() for kw in keywords.split(",")]
edges = [
(keywords[i], keywords[j])
for i in range(len(keywords))
for j in range(i + 1, len(keywords))
]
return edges
def create_knowledge_graph(data):
G = nx.Graph()
for _, row in data.iterrows():
words = []
for col in data.columns:
if pd.notnull(row[col]):
# Convert to string and handle numeric values
cell_value = str(row[col]).strip()
if cell_value:
words.extend(cell_value.split())
if words:
edges = extract_edges(",".join(words))
G.add_edges_from(edges)
for word in words:
word = word.strip()
if word not in G:
G.add_node(word, title=word, value=len(word))
return G
def render_graph_bokeh(G):
plot = figure(
title="Interactive Knowledge Graph",
x_range=(-1.5, 1.5),
y_range=(-1.5, 1.5),
tools="pan,wheel_zoom,box_zoom,reset,tap",
active_scroll="wheel_zoom",
)
plot.add_tools(HoverTool(tooltips="@index"))
graph_renderer = from_networkx(G, nx.spring_layout, scale=1, center=(0, 0))
graph_renderer.node_renderer.glyph.size = 10
graph_renderer.node_renderer.glyph.fill_color = "blue"
graph_renderer.node_renderer.glyph.line_color = "black"
graph_renderer.edge_renderer.glyph.line_width = 1
graph_renderer.edge_renderer.glyph.line_color = "gray"
plot.renderers.append(graph_renderer)
return plot
import re
def search_papers(topic: str, num_papers: int) -> list:
headers = {
"Authorization": f"Bearer {PERPLEXITY_API_KEY}",
"Content-Type": "application/json",
}
prompt = f"""Find {num_papers} recent research papers about {topic}.
Return ONLY a valid JSON array with the following structure for each paper:
[
{{
"Title": "paper title",
"Abstract": "abstract text",
"Keywords": "key terms"
}}
]"""
payload = {
"model": "llama-3.1-sonar-small-128k-chat",
"messages": [
{
"role": "system",
"content": "You are a research paper analyzer that returns valid JSON arrays.",
},
{"role": "user", "content": prompt},
],
"temperature": 0.1,
}
try:
response = requests.post(PERPLEXITY_API_URL, headers=headers, json=payload)
response.raise_for_status()
content = response.json()["choices"][0]["message"]["content"]
# Clean response to ensure valid JSON
content = content.strip()
if not content.startswith("["):
content = content[content.find("[") :]
if not content.endswith("]"):
content = content[: content.rfind("]") + 1]
# Remove any trailing commas before closing brackets
content = re.sub(r",\s*]", "]", content)
content = re.sub(r",\s*}", "}", content)
papers = json.loads(content)
if not isinstance(papers, list):
raise ValueError("Response is not a JSON array")
return papers
except requests.exceptions.RequestException as e:
st.error(f"API Request Error: {str(e)}")
return []
except json.JSONDecodeError as e:
st.error(f"Invalid JSON response: {str(e)}")
st.error(f"Response content: {response.text}")
return []
except ValueError as e:
st.error(f"Error: {str(e)}")
return []
import os
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY")
GEMINI_API_URL = "https://api.openai.com/v1/engines/davinci-codex/completions"
def call_gemini_api(prompt: str) -> str:
headers = {
"Authorization": f"Bearer {GEMINI_API_KEY}",
"Content-Type": "application/json",
}
payload = {
"prompt": prompt,
"max_tokens": 150,
"temperature": 0.7,
}
try:
model = genai.GenerativeModel("gemini-pro")
response = model.generate_content(prompt)
return response.text
except Exception as e:
st.error(f"Gemini API Error: {str(e)}")
return ""
def generate_gaps_paragraph(gaps):
prompt = f"Generate a brief paragraph about the gaps in the research based on the following gaps: {', '.join(gaps)}"
return call_gemini_api(prompt)
def generate_insights(G, topic):
papers = search_papers(topic, 5)
if papers:
st.write("### Research Insights from Perplexity API")
for paper in papers:
st.write(f"**Title:** {paper['Title']}")
st.write(f"**Abstract:** {paper['Abstract']}")
st.write(f"**Keywords:** {paper['Keywords']}")
st.write("---")
nodes = list(G.nodes(data=True))
insights = {}
insights["Strong Points"] = [
n for n, d in nodes if G.degree(n) > len(G.nodes) * 0.1
]
insights["Weak Points"] = [n for n, d in nodes if G.degree(n) < len(G.nodes) * 0.05]
insights["Gaps"] = [n for n, d in nodes if len(list(nx.neighbors(G, n))) == 0]
st.write("### Graph-Based Insights")
st.write("**Strong Points:**", insights["Strong Points"])
st.write("**Weak Points:**", insights["Weak Points"])
st.write("**Gaps:**", insights["Gaps"])
if insights["Gaps"]:
with st.spinner("Generating insights about gaps..."):
gaps_paragraph = generate_gaps_paragraph(insights["Gaps"])
if gaps_paragraph:
st.write("### Gaps in Research")
st.write(gaps_paragraph)
def main():
st.title("Advanced Interactive Knowledge Graph")
st.write(
"Upload a CSV file to generate a fully interactive and insightful knowledge graph."
)
uploaded_file = st.file_uploader("Choose a CSV file", type="csv")
if uploaded_file is not None:
try:
data = pd.read_csv(uploaded_file)
st.write("Preview of the uploaded data:")
st.dataframe(data.head())
G = create_knowledge_graph(data)
st.write("Generated Knowledge Graph:")
plot = render_graph_bokeh(G)
st.bokeh_chart(plot, use_container_width=True)
topic = st.text_input(
"Enter a topic for additional insights:", "knowledge graphs"
)
if topic:
generate_insights(G, topic)
except Exception as e:
st.error(f"An error occurred while processing the file: {e}")
else:
st.info("Please upload a CSV file to get started.")
if __name__ == "__main__":
main()
|