File size: 7,279 Bytes
b91146d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import streamlit as st
import pandas as pd
import networkx as nx
from bokeh.models import HoverTool
from bokeh.plotting import figure, from_networkx
import requests
import json
import google.generativeai as genai

PERPLEXITY_API_KEY = "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"
PERPLEXITY_API_URL = "https://api.perplexity.ai/chat/completions"


def extract_edges(keywords):
    keywords = [kw.strip() for kw in keywords.split(",")]
    edges = [
        (keywords[i], keywords[j])
        for i in range(len(keywords))
        for j in range(i + 1, len(keywords))
    ]
    return edges


def create_knowledge_graph(data):
    G = nx.Graph()

    for _, row in data.iterrows():
        words = []
        for col in data.columns:
            if pd.notnull(row[col]):
                # Convert to string and handle numeric values
                cell_value = str(row[col]).strip()
                if cell_value:
                    words.extend(cell_value.split())

        if words:
            edges = extract_edges(",".join(words))
            G.add_edges_from(edges)

            for word in words:
                word = word.strip()
                if word not in G:
                    G.add_node(word, title=word, value=len(word))

    return G


def render_graph_bokeh(G):
    plot = figure(
        title="Interactive Knowledge Graph",
        x_range=(-1.5, 1.5),
        y_range=(-1.5, 1.5),
        tools="pan,wheel_zoom,box_zoom,reset,tap",
        active_scroll="wheel_zoom",
    )
    plot.add_tools(HoverTool(tooltips="@index"))

    graph_renderer = from_networkx(G, nx.spring_layout, scale=1, center=(0, 0))

    graph_renderer.node_renderer.glyph.size = 10
    graph_renderer.node_renderer.glyph.fill_color = "blue"
    graph_renderer.node_renderer.glyph.line_color = "black"

    graph_renderer.edge_renderer.glyph.line_width = 1
    graph_renderer.edge_renderer.glyph.line_color = "gray"

    plot.renderers.append(graph_renderer)

    return plot


import re


def search_papers(topic: str, num_papers: int) -> list:
    headers = {
        "Authorization": f"Bearer {PERPLEXITY_API_KEY}",
        "Content-Type": "application/json",
    }

    prompt = f"""Find {num_papers} recent research papers about {topic}.

    Return ONLY a valid JSON array with the following structure for each paper:

    [

        {{

            "Title": "paper title",

            "Abstract": "abstract text",

            "Keywords": "key terms"

        }}

    ]"""

    payload = {
        "model": "llama-3.1-sonar-small-128k-chat",
        "messages": [
            {
                "role": "system",
                "content": "You are a research paper analyzer that returns valid JSON arrays.",
            },
            {"role": "user", "content": prompt},
        ],
        "temperature": 0.1,
    }

    try:
        response = requests.post(PERPLEXITY_API_URL, headers=headers, json=payload)
        response.raise_for_status()
        content = response.json()["choices"][0]["message"]["content"]

        # Clean response to ensure valid JSON
        content = content.strip()
        if not content.startswith("["):
            content = content[content.find("[") :]
        if not content.endswith("]"):
            content = content[: content.rfind("]") + 1]

        # Remove any trailing commas before closing brackets
        content = re.sub(r",\s*]", "]", content)
        content = re.sub(r",\s*}", "}", content)

        papers = json.loads(content)
        if not isinstance(papers, list):
            raise ValueError("Response is not a JSON array")
        return papers
    except requests.exceptions.RequestException as e:
        st.error(f"API Request Error: {str(e)}")
        return []
    except json.JSONDecodeError as e:
        st.error(f"Invalid JSON response: {str(e)}")
        st.error(f"Response content: {response.text}")
        return []
    except ValueError as e:
        st.error(f"Error: {str(e)}")
        return []


import os

GEMINI_API_KEY = os.getenv("GEMINI_API_KEY")
GEMINI_API_URL = "https://api.openai.com/v1/engines/davinci-codex/completions"


def call_gemini_api(prompt: str) -> str:
    headers = {
        "Authorization": f"Bearer {GEMINI_API_KEY}",
        "Content-Type": "application/json",
    }

    payload = {
        "prompt": prompt,
        "max_tokens": 150,
        "temperature": 0.7,
    }

    try:
        model = genai.GenerativeModel("gemini-pro")
        response = model.generate_content(prompt)
        return response.text
    except Exception as e:
        st.error(f"Gemini API Error: {str(e)}")
        return ""


def generate_gaps_paragraph(gaps):
    prompt = f"Generate a brief paragraph about the gaps in the research based on the following gaps: {', '.join(gaps)}"
    return call_gemini_api(prompt)


def generate_insights(G, topic):
    papers = search_papers(topic, 5)
    if papers:
        st.write("### Research Insights from Perplexity API")
        for paper in papers:
            st.write(f"**Title:** {paper['Title']}")
            st.write(f"**Abstract:** {paper['Abstract']}")
            st.write(f"**Keywords:** {paper['Keywords']}")
            st.write("---")

    nodes = list(G.nodes(data=True))
    insights = {}
    insights["Strong Points"] = [
        n for n, d in nodes if G.degree(n) > len(G.nodes) * 0.1
    ]
    insights["Weak Points"] = [n for n, d in nodes if G.degree(n) < len(G.nodes) * 0.05]
    insights["Gaps"] = [n for n, d in nodes if len(list(nx.neighbors(G, n))) == 0]

    st.write("### Graph-Based Insights")
    st.write("**Strong Points:**", insights["Strong Points"])
    st.write("**Weak Points:**", insights["Weak Points"])
    st.write("**Gaps:**", insights["Gaps"])

    if insights["Gaps"]:
        with st.spinner("Generating insights about gaps..."):
            gaps_paragraph = generate_gaps_paragraph(insights["Gaps"])
            if gaps_paragraph:
                st.write("### Gaps in Research")
                st.write(gaps_paragraph)


def main():
    st.title("Advanced Interactive Knowledge Graph")
    st.write(
        "Upload a CSV file to generate a fully interactive and insightful knowledge graph."
    )

    uploaded_file = st.file_uploader("Choose a CSV file", type="csv")

    if uploaded_file is not None:
        try:
            data = pd.read_csv(uploaded_file)
            st.write("Preview of the uploaded data:")
            st.dataframe(data.head())

            G = create_knowledge_graph(data)

            st.write("Generated Knowledge Graph:")
            plot = render_graph_bokeh(G)
            st.bokeh_chart(plot, use_container_width=True)

            topic = st.text_input(
                "Enter a topic for additional insights:", "knowledge graphs"
            )
            if topic:
                generate_insights(G, topic)

        except Exception as e:
            st.error(f"An error occurred while processing the file: {e}")
    else:
        st.info("Please upload a CSV file to get started.")


if __name__ == "__main__":
    main()