Spaces:
Build error
Build error
File size: 33,161 Bytes
b91146d b8a1cb6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 |
import json
import typing_extensions as typing
import google.generativeai as genai
from typing import List, Dict, Any
import numpy as np
from collections import defaultdict
from dotenv import load_dotenv
import os
import pymongo
from pymongo import MongoClient
load_dotenv()
GEMINI_API_KEY = os.getenv('GEMINI_KEY')
class EngagementMetrics(typing.TypedDict):
participation_level: str # "high" | "medium" | "low"
question_quality: str # "advanced" | "intermediate" | "basic"
concept_understanding: str # "strong" | "moderate" | "needs_improvement"
class StudentInsight(typing.TypedDict):
student_id: str
performance_level: str # "high_performer" | "average" | "at_risk"
struggling_topics: list[str]
engagement_metrics: EngagementMetrics
class TopicInsight(typing.TypedDict):
topic: str
difficulty_level: float # 0 to 1
student_count: int
common_issues: list[str]
key_misconceptions: list[str]
class RecommendedAction(typing.TypedDict):
action: str
priority: str # "high" | "medium" | "low"
target_group: str # "all_students" | "specific_students" | "faculty"
reasoning: str
expected_impact: str
class ClassDistribution(typing.TypedDict):
high_performers: float
average_performers: float
at_risk: float
class CourseHealth(typing.TypedDict):
overall_engagement: float # 0 to 1
critical_topics: list[str]
class_distribution: ClassDistribution
class InterventionMetrics(typing.TypedDict):
immediate_attention_needed: list[str] # student_ids
monitoring_required: list[str] # student_ids
class AnalyticsResponse(typing.TypedDict):
topic_insights: list[TopicInsight]
student_insights: list[StudentInsight]
recommended_actions: list[RecommendedAction]
course_health: CourseHealth
intervention_metrics: InterventionMetrics
class NovaScholarAnalytics:
def __init__(self, model_name: str = "gemini-1.5-flash"):
genai.configure(api_key=GEMINI_API_KEY)
self.model = genai.GenerativeModel(model_name)
def _create_analytics_prompt(self, chat_histories: List[Dict], all_topics: List[str]) -> str:
"""Creates a structured prompt for Gemini to analyze chat histories."""
# Prompt 1:
# return f"""Analyze these student chat histories for a university course and provide detailed analytics.
# Context:
# - These are pre-class chat interactions between students and an AI tutor
# - Topics covered: {', '.join(all_topics)}
# Chat histories: {json.dumps(chat_histories, indent=2)}
# Return the analysis in JSON format matching this exact schema:
# {AnalyticsResponse.__annotations__}
# Ensure all numeric values are between 0 and 1 (accuracy upto 3 decimal places) where applicable.
# Important analysis guidelines:
# 1. Identify topics where students show confusion or ask multiple follow-up questions
# 2. Look for patterns in question types and complexity
# 3. Analyze response understanding based on follow-up questions
# 4. Consider both explicit and implicit signs of difficulty
# 5. Focus on concept relationships and prerequisite understanding"""
# Prompt 2:
# return f"""Analyze the provided student chat histories for a university course and generate concise, actionable analytics.
# Context:
# - Chat histories: {json.dumps(chat_histories, indent=2)}
# - These are pre-class interactions between students and an AI tutor aimed at identifying learning difficulties and improving course delivery.
# - Topics covered: {', '.join(all_topics)}.
# Your task is to extract key insights that will help faculty address challenges effectively and enhance learning outcomes.
# Output Format:
# 1. Topics where students face significant difficulties:
# - Provide a ranked list of topics where the majority of students are struggling, based on the frequency and nature of their questions or misconceptions.
# - Include the percentage of students who found each topic challenging.
# 2. AI-recommended actions for faculty:
# - Suggest actionable steps to address the difficulties identified in each critical topic.
# - Specify the priority of each action (high, medium, low) based on the urgency and impact.
# - Explain the reasoning behind each recommendation and its expected impact on student outcomes.
# 3. Student-specific analytics (focusing on at-risk students):
# - Identify students categorized as "at-risk" based on their engagement levels, question complexity, and recurring struggles.
# - For each at-risk student, list their top 3 struggling topics and their engagement metrics (participation level, concept understanding).
# - Provide personalized recommendations for improving their understanding.
# Guidelines for Analysis:
# - Focus on actionable and concise insights rather than exhaustive details.
# - Use both explicit (e.g., direct questions) and implicit (e.g., repeated follow-ups) cues to identify areas of difficulty.
# - Prioritize topics with higher difficulty scores or more students struggling.
# - Ensure numerical values (e.g., difficulty levels, percentages) are between 0 and 1 where applicable.
# The response must be well-structured, concise, and highly actionable for faculty to implement improvements effectively."""
# Prompt 3:
return f"""Analyze the provided student chat histories for a university course and generate concise, actionable analytics.
Context:
- Chat histories: {json.dumps(chat_histories, indent=2)}
- These are pre-class interactions between students and an AI tutor aimed at identifying learning difficulties and improving course delivery.
- Topics covered: {', '.join(all_topics)}.
Your task is to provide detailed analytics that will help faculty address challenges effectively and enhance learning outcomes.
Output Format (strictly follow this JSON structure):
{{
"topic_wise_insights": [
{{
"topic": "<string>",
"struggling_percentage": <number between 0 and 1>,
"key_issues": ["<string>", "<string>", ...],
"key_misconceptions": ["<string>", "<string>", ...],
"recommended_actions": {{
"description": "<string>",
"priority": "high|medium|low",
"expected_outcome": "<string>"
}}
}}
],
"ai_recommended_actions": [
{{
"action": "<string>",
"priority": "high|medium|low",
"reasoning": "<string>",
"expected_outcome": "<string>",
"pedagogy_recommendations": {{
"methods": ["<string>", "<string>", ...],
"resources": ["<string>", "<string>", ...],
"expected_impact": "<string>"
}}
}}
],
"student_analytics": [
{{
"student_id": "<string>",
"engagement_metrics": {{
"participation_level": <number between 0 and 1>,
"concept_understanding": "strong|moderate|needs_improvement",
"question_quality": "advanced|intermediate|basic"
}},
"struggling_topics": ["<string>", "<string>", ...],
"personalized_recommendation": "<string>"
}}
]
}}
Guidelines for Analysis:
- Focus on actionable and concise insights rather than exhaustive details.
- Use both explicit (e.g., direct questions) and implicit (e.g., repeated follow-ups) cues to identify areas of difficulty.
- Prioritize topics with higher difficulty scores or more students struggling.
- Ensure numerical values (e.g., difficulty levels, percentages) are between 0 and 1 where applicable.
- Make sure to include All** students in the analysis, not just a subset.
- for the ai_recommended_actions:
- Prioritize pedagogy recommendations for critical topics with the high difficulty scores or struggling percentages.
- For each action:
- Include specific teaching methods (e.g., interactive discussions or quizzes, problem-based learning, practical examples etc).
- Recommend supporting resources (e.g., videos, handouts, simulations).
- Provide reasoning for the recommendation and the expected outcomes for student learning.
- Example:
- **Action:** Conduct an interactive problem-solving session on "<Topic Name>".
- **Reasoning:** Students showed difficulty in applying concepts to practical problems.
- **Expected Outcome:** Improved practical understanding and application of the topic.
- **Pedagogy Recommendations:**
- **Methods:** Group discussions, real-world case studies.
- **Resources:** Online interactive tools, relevant case studies, video walkthroughs.
- **Expected Impact:** Enhance conceptual clarity by 40% and practical application by 30%.
The response must adhere strictly to the above JSON structure, with all fields populated appropriately."""
def _calculate_class_distribution(self, analytics: Dict) -> Dict:
"""Calculate the distribution of students across performance levels."""
try:
total_students = len(analytics.get("student_insights", []))
if total_students == 0:
return {
"high_performers": 0,
"average_performers": 0,
"at_risk": 0
}
distribution = defaultdict(int)
for student in analytics.get("student_insights", []):
performance_level = student.get("performance_level", "average")
# Map performance levels to our three categories
if performance_level in ["excellent", "high", "high_performer"]:
distribution["high_performers"] += 1
elif performance_level in ["struggling", "low", "at_risk"]:
distribution["at_risk"] += 1
else:
distribution["average_performers"] += 1
# Convert to percentages
return {
level: count/total_students
for level, count in distribution.items()
}
except Exception as e:
print(f"Error calculating class distribution: {str(e)}")
return {
"high_performers": 0,
"average_performers": 0,
"at_risk": 0
}
def _identify_urgent_cases(self, analytics: Dict) -> List[str]:
"""Identify students needing immediate attention."""
try:
urgent_cases = []
for student in analytics.get("student_insights", []):
student_id = student.get("student_id")
if not student_id:
continue
# Check multiple risk factors
risk_factors = 0
# Factor 1: Performance level
if student.get("performance_level") in ["struggling", "at_risk", "low"]:
risk_factors += 1
# Factor 2: Number of struggling topics
if len(student.get("struggling_topics", [])) >= 2:
risk_factors += 1
# Factor 3: Engagement metrics
engagement = student.get("engagement_metrics", {})
if (engagement.get("participation_level") == "low" or
engagement.get("concept_understanding") == "needs_improvement"):
risk_factors += 1
# If student has multiple risk factors, add to urgent cases
if risk_factors >= 2:
urgent_cases.append(student_id)
return urgent_cases
except Exception as e:
print(f"Error identifying urgent cases: {str(e)}")
return []
def _identify_monitoring_cases(self, analytics: Dict) -> List[str]:
"""Identify students who need monitoring but aren't urgent cases."""
try:
monitoring_cases = []
urgent_cases = set(self._identify_urgent_cases(analytics))
for student in analytics.get("student_insights", []):
student_id = student.get("student_id")
if not student_id or student_id in urgent_cases:
continue
# Check monitoring criteria
monitoring_needed = False
# Criterion 1: Has some struggling topics but not enough for urgent
if len(student.get("struggling_topics", [])) == 1:
monitoring_needed = True
# Criterion 2: Medium-low engagement
engagement = student.get("engagement_metrics", {})
if engagement.get("participation_level") == "medium":
monitoring_needed = True
# Criterion 3: Recent performance decline
if student.get("performance_level") == "average":
monitoring_needed = True
if monitoring_needed:
monitoring_cases.append(student_id)
return monitoring_cases
except Exception as e:
print(f"Error identifying monitoring cases: {str(e)}")
return []
def _identify_critical_topics(self, analytics: Dict) -> List[str]:
"""
Identify critical topics that need attention based on multiple factors.
Returns a list of topic names that are considered critical.
"""
try:
critical_topics = []
topics = analytics.get("topic_insights", [])
for topic in topics:
if not isinstance(topic, dict):
continue
# Initialize score for topic criticality
critical_score = 0
# Factor 1: High difficulty level
difficulty_level = topic.get("difficulty_level", 0)
if difficulty_level > 0.7:
critical_score += 2
elif difficulty_level > 0.5:
critical_score += 1
# Factor 2: Number of students struggling
student_count = topic.get("student_count", 0)
total_students = len(analytics.get("student_insights", []))
if total_students > 0:
struggle_ratio = student_count / total_students
if struggle_ratio > 0.5:
critical_score += 2
elif struggle_ratio > 0.3:
critical_score += 1
# Factor 3: Number of common issues
if len(topic.get("common_issues", [])) > 2:
critical_score += 1
# Factor 4: Number of key misconceptions
if len(topic.get("key_misconceptions", [])) > 1:
critical_score += 1
# If topic exceeds threshold, mark as critical
if critical_score >= 3:
critical_topics.append(topic.get("topic", "Unknown Topic"))
return critical_topics
except Exception as e:
print(f"Error identifying critical topics: {str(e)}")
return []
def _calculate_engagement(self, analytics: Dict) -> Dict:
"""
Calculate detailed engagement metrics across all students.
Returns a dictionary with engagement statistics.
"""
try:
total_students = len(analytics.get("student_insights", []))
if total_students == 0:
return {
"total_students": 0,
"overall_score": 0,
"engagement_distribution": {
"high": 0,
"medium": 0,
"low": 0
},
"participation_metrics": {
"average_topics_per_student": 0,
"active_participants": 0
}
}
engagement_levels = defaultdict(int)
total_topics_engaged = 0
active_participants = 0
for student in analytics.get("student_insights", []):
# Get engagement metrics
metrics = student.get("engagement_metrics", {})
# Calculate participation level
participation = metrics.get("participation_level", "low").lower()
engagement_levels[participation] += 1
# Count topics student is engaged with
topics_count = len(student.get("struggling_topics", []))
total_topics_engaged += topics_count
# Count active participants (students engaging with any topics)
if topics_count > 0:
active_participants += 1
# Calculate overall engagement score (0-1)
weighted_score = (
(engagement_levels["high"] * 1.0 +
engagement_levels["medium"] * 0.6 +
engagement_levels["low"] * 0.2) / total_students
)
return {
"total_students": total_students,
"overall_score": round(weighted_score, 2),
"engagement_distribution": {
level: count/total_students
for level, count in engagement_levels.items()
},
"participation_metrics": {
"average_topics_per_student": round(total_topics_engaged / total_students, 2),
"active_participants_ratio": round(active_participants / total_students, 2)
}
}
except Exception as e:
print(f"Error calculating engagement: {str(e)}")
return {
"total_students": 0,
"overall_score": 0,
"engagement_distribution": {
"high": 0,
"medium": 0,
"low": 0
},
"participation_metrics": {
"average_topics_per_student": 0,
"active_participants_ratio": 0
}
}
def _process_gemini_response(self, response: str) -> Dict:
"""Process and validate Gemini's response."""
# try:
# analytics = json.loads(response)
# return self._enrich_analytics(analytics)
# except json.JSONDecodeError as e:
# print(f"Error decoding Gemini response: {e}")
# return self._fallback_analytics()
try:
# Parse JSON response
analytics = json.loads(response)
# Validate required fields exist
required_fields = {
"topic_insights": [],
"student_insights": [],
"recommended_actions": []
}
# Ensure all required fields exist with default values
for field, default_value in required_fields.items():
if field not in analytics or not analytics[field]:
analytics[field] = default_value
# Now enrich the validated analytics
return self._enrich_analytics(analytics)
except (json.JSONDecodeError, KeyError, TypeError) as e:
print(f"Error processing Gemini response: {str(e)}")
print(f"Raw response: {response}")
return self._fallback_analytics()
def _enrich_analytics(self, analytics: Dict) -> Dict:
"""Add derived insights and metrics to the analytics."""
# Add overall course health metrics
analytics["course_health"] = {
"overall_engagement": self._calculate_engagement(analytics),
"critical_topics": self._identify_critical_topics(analytics),
"class_distribution": self._calculate_class_distribution(analytics)
}
# Add intervention urgency scores
analytics["intervention_metrics"] = {
"immediate_attention_needed": self._identify_urgent_cases(analytics),
"monitoring_required": self._identify_monitoring_cases(analytics)
}
return analytics
def _calculate_engagement(self, analytics: Dict) -> Dict:
# """Calculate overall engagement metrics."""
# total_students = len(analytics["student_insights"])
# engagement_levels = defaultdict(int)
# for student in analytics["student_insights"]:
# engagement_levels[student["engagement_metrics"]["participation_level"]] += 1
# return {
# "total_students": total_students,
# "engagement_distribution": {
# level: count/total_students
# for level, count in engagement_levels.items()
# }
# }
"""Calculate overall engagement metrics with defensive programming."""
try:
total_students = len(analytics.get("student_insights", []))
if total_students == 0:
return {
"total_students": 0,
"engagement_distribution": {
"high": 0,
"medium": 0,
"low": 0
}
}
engagement_levels = defaultdict(int)
for student in analytics.get("student_insights", []):
metrics = student.get("engagement_metrics", {})
level = metrics.get("participation_level", "low")
engagement_levels[level] += 1
return {
"total_students": total_students,
"engagement_distribution": {
level: count/total_students
for level, count in engagement_levels.items()
}
}
except Exception as e:
print(f"Error calculating engagement: {str(e)}")
return {
"total_students": 0,
"engagement_distribution": {
"high": 0,
"medium": 0,
"low": 0
}
}
def _identify_critical_topics(self, analytics: Dict) -> List[Dict]:
# """Identify topics needing immediate attention."""
# return [
# topic for topic in analytics["topic_insights"]
# if topic["difficulty_level"] > 0.7 or
# len(topic["common_issues"]) > 2
# ]
"""Identify topics needing immediate attention with defensive programming."""
try:
return [
topic for topic in analytics.get("topic_insights", [])
if topic.get("difficulty_level", 0) > 0.7 or
len(topic.get("common_issues", [])) > 2
]
except Exception as e:
print(f"Error identifying critical topics: {str(e)}")
return []
def generate_analytics(self, chat_histories: List[Dict], all_topics: List[str]) -> Dict:
# Method 1: (caused key 'student_insights' error):
# """Main method to generate analytics from chat histories."""
# # Preprocess chat histories
# processed_histories = self._preprocess_chat_histories(chat_histories)
# # Create and send prompt to Gemini
# prompt = self._create_analytics_prompt(processed_histories, all_topics)
# response = self.model.generate_content(
# prompt,
# generation_config=genai.GenerationConfig(
# response_mime_type="application/json",
# response_schema=AnalyticsResponse
# )
# )
# # # Process and enrich analytics
# # analytics = self._process_gemini_response(response.text)
# # return analytics
# # Process, validate, and enrich the response
# analytics = self._process_gemini_response(response.text)
# # Then cast it to satisfy the type checker
# return typing.cast(AnalyticsResponse, analytics)
# Method 2 (possible fix):
# """Main method to generate analytics with better error handling."""
# try:
# processed_histories = self._preprocess_chat_histories(chat_histories)
# prompt = self._create_analytics_prompt(processed_histories, all_topics)
# response = self.model.generate_content(
# prompt,
# generation_config=genai.GenerationConfig(
# response_mime_type="application/json",
# temperature=0.15
# # response_schema=AnalyticsResponse
# )
# )
# if not response.text:
# print("Empty response from Gemini")
# return self._fallback_analytics()
# # analytics = self._process_gemini_response(response.text)
# # return typing.cast(AnalyticsResponse, analytics)
# # return response.text;
# analytics = json.loads(response.text)
# return analytics
# except Exception as e:
# print(f"Error generating analytics: {str(e)}")
# return self._fallback_analytics()
# Debugging code:
"""Main method to generate analytics with better error handling."""
try:
# Debug print for input validation
print("Input validation:")
print(f"Chat histories: {len(chat_histories)} entries")
print(f"Topics: {all_topics}")
if not chat_histories or not all_topics:
print("Missing required input data")
return self._fallback_analytics()
# Debug the preprocessing step
try:
processed_histories = self._preprocess_chat_histories(chat_histories)
print("Successfully preprocessed chat histories")
except Exception as preprocess_error:
print(f"Error in preprocessing: {str(preprocess_error)}")
return self._fallback_analytics()
# Debug the prompt creation
try:
prompt = self._create_analytics_prompt(processed_histories, all_topics)
print("Successfully created prompt")
print("Prompt preview:", prompt[:200] + "...") # Print first 200 chars
except Exception as prompt_error:
print(f"Error in prompt creation: {str(prompt_error)}")
return self._fallback_analytics()
# Rest of the function remains the same
response = self.model.generate_content(
prompt,
generation_config=genai.GenerationConfig(
response_mime_type="application/json",
temperature=0.15
)
)
if not response.text:
print("Empty response from Gemini")
return self._fallback_analytics()
analytics = json.loads(response.text)
return analytics
except Exception as e:
print(f"Error generating analytics: {str(e)}")
print(f"Error type: {type(e)}")
import traceback
print("Full traceback:", traceback.format_exc())
return self._fallback_analytics()
def _preprocess_chat_histories(self, chat_histories: List[Dict]) -> List[Dict]:
# """Preprocess chat histories to focus on relevant information."""
# processed = []
# for chat in chat_histories:
# print(str(chat["user_id"]))
# processed_chat = {
# "user_id": str(chat["user_id"]),
# "messages": [
# {
# "prompt": msg["prompt"],
# "response": msg["response"]
# }
# for msg in chat["messages"]
# ]
# }
# processed.append(processed_chat)
# return processed
# Code 2:
"""Preprocess chat histories to focus on relevant information."""
processed = []
for chat in chat_histories:
# Convert ObjectId to string if it's an ObjectId
user_id = str(chat["user_id"]["$oid"]) if isinstance(chat["user_id"], dict) and "$oid" in chat["user_id"] else str(chat["user_id"])
try:
processed_chat = {
"user_id": user_id,
"messages": [
{
"prompt": msg["prompt"],
"response": msg["response"]
}
for msg in chat["messages"]
]
}
processed.append(processed_chat)
print(f"Successfully processed chat for user: {user_id}")
except Exception as e:
print(f"Error processing chat for user: {user_id}")
print(f"Error details: {str(e)}")
continue
return processed
def _fallback_analytics(self) -> Dict:
# """Provide basic analytics in case of LLM processing failure."""
# return {
# "topic_insights": [],
# "student_insights": [],
# "recommended_actions": [
# {
# "action": "Review analytics generation process",
# "priority": "high",
# "target_group": "system_administrators",
# "reasoning": "Analytics generation failed",
# "expected_impact": "Restore analytics functionality"
# }
# ]
# }
"""Provide comprehensive fallback analytics that match our schema."""
return {
"topic_insights": [],
"student_insights": [],
"recommended_actions": [
{
"action": "Review analytics generation process",
"priority": "high",
"target_group": "system_administrators",
"reasoning": "Analytics generation failed",
"expected_impact": "Restore analytics functionality"
}
],
"course_health": {
"overall_engagement": 0,
"critical_topics": [],
"class_distribution": {
"high_performers": 0,
"average_performers": 0,
"at_risk": 0
}
},
"intervention_metrics": {
"immediate_attention_needed": [],
"monitoring_required": []
}
}
# if __name__ == "__main__":
# # Example usage
# analytics_generator = NovaScholarAnalytics()
# analytics = analytics_generator.generate_analytics(chat_histories, all_topics)
# print(json.dumps(analytics, indent=2)) |