Spaces:
Build error
Build error
File size: 17,003 Bytes
f0ba133 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 |
# if __name__ == "__main__":
# main()
import streamlit as st
import google.generativeai as genai
from typing import Dict, Any
import PyPDF2
import io
from pymongo import MongoClient
from dotenv import load_dotenv
import os
import json
import re
# --------------------------------------------------------------------------------
# 1. Environment Setup
# --------------------------------------------------------------------------------
load_dotenv()
# MongoDB
MONGODB_URI = os.getenv("MONGODB_URI")
# Gemini
GEMINI_KEY = os.getenv("GEMINI_KEY")
# Configure Gemini
genai.configure(api_key=GEMINI_KEY)
# --------------------------------------------------------------------------------
# 2. Database Connection
# --------------------------------------------------------------------------------
def create_db_connection():
"""
Create MongoDB connection and return the 'papers' collection.
"""
try:
client = MongoClient(MONGODB_URI)
db = client["novascholar_db"] # Database name
collection = db["research_papers"] # Collection name
# Ping to confirm connection
client.admin.command("ping")
return db
except Exception as e:
st.error(f"Database connection error: {str(e)}")
return None
# --------------------------------------------------------------------------------
# 3. PDF Text Extraction
# --------------------------------------------------------------------------------
def extract_text_from_pdf(pdf_file) -> str:
"""
Extract all text from a PDF.
"""
try:
pdf_reader = PyPDF2.PdfReader(pdf_file)
text = ""
for page in pdf_reader.pages:
text += page.extract_text() + "\n"
return text
except Exception as e:
st.error(f"Error processing PDF: {str(e)}")
return ""
# --------------------------------------------------------------------------------
# 4. Gemini Response Helper
# --------------------------------------------------------------------------------
def get_gemini_response(prompt: str) -> str:
"""
Sends a prompt to Google's Gemini model and returns the response text.
Adjust this function as needed for your generative AI usage.
"""
try:
model = genai.GenerativeModel("gemini-pro")
response = model.generate_content(prompt)
return response.text
except Exception as e:
st.error(f"Gemini API Error: {str(e)}")
return ""
# --------------------------------------------------------------------------------
# 5. Basic Info Extraction
# --------------------------------------------------------------------------------
def extract_basic_info(text: str) -> Dict[str, str]:
"""
Extract title, publication, journal/conference, abstract, keywords, author, and date from the paper text.
Return a dictionary with these fields.
"""
prompt = f"""
Extract the following fields from the research paper text below:
Title
Publication
Journal_Conference
Abstract
Keywords
Author
Date_of_Publication
Paper text:
{text}
Return them in this format:
Title: ...
Publication: ...
Journal_Conference: ...
Abstract: ...
Keywords: ...
Author: ...
Date_of_Publication: ...
"""
response = get_gemini_response(prompt)
if not response:
return {}
info = {}
lines = response.split("\n")
for line in lines:
if ":" in line:
key, value = line.split(":", 1)
info[key.strip()] = value.strip()
return info
# --------------------------------------------------------------------------------
# 6. Content Sections Extraction
# --------------------------------------------------------------------------------
def extract_content_sections(text: str) -> Dict[str, str]:
"""
Extract expanded sections: Intro, Literature_Review, Research_Models_Used,
Methodology, Discussion, Future_Scope, Theory.
"""
prompt = f"""Please extract these sections from the research paper:
1. Introduction
2. Literature Review
3. Research Models Used
4. Methodology
5. Discussion
6. Future Scope
7. Theory
Paper text: {text}
Return in this exact format without any additional text or explanations also make sure
no data should be empty (at least 10-15 words) and it should be meaningful:
Intro: <text>
Literature_Review: <text>
Research_Models_Used: <text>
Methodology: <text>
Discussion: <text>
Future_Scope: <text>
Theory: <text>
"""
response = get_gemini_response(prompt)
if not response:
return {}
sections = {}
lines = response.split("\n")
for line in lines:
if ":" in line:
key, value = line.split(":", 1)
sections[key.strip()] = value.strip()
return sections
# --------------------------------------------------------------------------------
# 7. Variables Extraction
# --------------------------------------------------------------------------------
def extract_variables(text: str) -> Dict[str, Any]:
"""
Extract variable data: Independent_Variables, nof_Independent_Variables,
Dependent_Variables, nof_Dependent_Variables, Control_Variables,
Extraneous_Variables, nof_Control_Variables, nof_Extraneous_Variables
"""
prompt = f"""From the paper text, extract the following fields:
1. Independent_Variables
2. nof_Independent_Variables
3. Dependent_Variables
4. nof_Dependent_Variables
5. Control_Variables
6. Extraneous_Variables
7. nof_Control_Variables
8. nof_Extraneous_Variables
Return them in this format:
Independent_Variables: <list>
nof_Independent_Variables: <integer>
Dependent_Variables: <list>
nof_Dependent_Variables: <integer>
Control_Variables: <list>
Extraneous_Variables: <list>
nof_Control_Variables: <integer>
nof_Extraneous_Variables: <integer>
Paper text: {text}
"""
response = get_gemini_response(prompt)
if not response:
return {}
variables = {}
lines = response.split("\n")
for line in lines:
if ":" in line:
key, value = line.split(":", 1)
# Attempt to convert to integer where appropriate
clean_key = key.strip()
clean_value = value.strip()
if clean_key.startswith("nof_"):
try:
variables[clean_key] = int(clean_value)
except ValueError:
# fallback if it's not an integer
variables[clean_key] = 0
else:
variables[clean_key] = clean_value
return variables
# --------------------------------------------------------------------------------
# 8. Utility to ensure no empty fields (example logic)
# --------------------------------------------------------------------------------
def ensure_non_empty_values(data: Dict[str, Any], fallback_text: str) -> Dict[str, Any]:
"""
Ensure each extracted field has meaningful content. If empty, fill with default text.
"""
for k, v in data.items():
if not v or len(str(v).split()) < 3: # example check for minimal words
data[k] = f"No sufficient data found for {k}. Could not parse."
return data
# --------------------------------------------------------------------------------
# 9. Processing the Paper
# --------------------------------------------------------------------------------
# def process_paper(text: str) -> Dict[str, Any]:
# """
# Orchestrate calls to extract basic info, content sections, and variables.
# Return a dictionary containing all the fields with consistent naming.
# """
# with st.spinner("Extracting basic information..."):
# basic_info = extract_basic_info(text)
# basic_info = ensure_non_empty_values(basic_info, text)
# with st.spinner("Extracting content sections..."):
# content_sections = extract_content_sections(text)
# content_sections = ensure_non_empty_values(content_sections, text)
# with st.spinner("Extracting variables..."):
# variables_info = extract_variables(text)
# variables_info = ensure_non_empty_values(variables_info, text)
# # Create a single dictionary with all fields
# paper_doc = {
# "Title": basic_info.get("Title", ""),
# "Publication": basic_info.get("Publication", ""),
# "Journal_Conference": basic_info.get("Journal_Conference", ""),
# "Abstract": basic_info.get("Abstract", ""),
# "Keywords": basic_info.get("Keywords", ""),
# "Author": basic_info.get("Author", ""),
# "Date_of_Publication": basic_info.get("Date_of_Publication", ""),
# "Intro": content_sections.get("Intro", ""),
# "Literature_Review": content_sections.get("Literature_Review", ""),
# "Research_Models_Used": content_sections.get("Research_Models_Used", ""),
# "Methodology": content_sections.get("Methodology", ""),
# "Discussion": content_sections.get("Discussion", ""),
# "Future_Scope": content_sections.get("Future_Scope", ""),
# "Theory": content_sections.get("Theory", ""),
# "Independent_Variables": variables_info.get("Independent_Variables", ""),
# "nof_Independent_Variables": variables_info.get("nof_Independent_Variables", 0),
# "Dependent_Variables": variables_info.get("Dependent_Variables", ""),
# "nof_Dependent_Variables": variables_info.get("nof_Dependent_Variables", 0),
# "Control_Variables": variables_info.get("Control_Variables", ""),
# "Extraneous_Variables": variables_info.get("Extraneous_Variables", ""),
# "nof_Control_Variables": variables_info.get("nof_Control_Variables", 0),
# "nof_Extraneous_Variables": variables_info.get("nof_Extraneous_Variables", 0),
# }
# return paper_doc
# filepath: /c:/Users/acer/OneDrive/Documents/GitHub/res-cor/research22.py
# ...existing code continues...
# --------------------------------------------------------------------------------
# 3. Paper Type Attributes
# --------------------------------------------------------------------------------
PAPER_TYPE_ATTRIBUTES = {
"Review Based Paper": [
"Title",
"Publication",
"Journal_Conference",
"Abstract",
"Keywords",
"Author",
"Date_of_Publication",
"Intro",
"Literature_Review",
"Body",
"Protocol",
"Search String",
"Included Studies",
"Data Collection and Analysis Methods",
"Data Extraction Table",
"Synthesis and Analysis",
"Conclusion",
"Limitations",
"Results",
"References",
"Risk of Bias Assessment",
],
"Opinion/Perspective Based Paper": [
"Title",
"Publication",
"Journal_Conference",
"Abstract",
"Keywords",
"Author",
"Date_of_Publication",
"Intro",
"Literature_Review",
"Introduction",
"Body",
"Results and Discussion",
"Conclusion",
"References",
],
"Empirical Research Paper": [
"Title",
"Publication",
"Journal_Conference",
"Abstract",
"Keywords",
"Author",
"Date_of_Publication",
"Intro",
"Literature_Review",
"Introduction",
"Body",
"Methodology",
"Participants",
"Survey Instrument",
"Data Collection",
"Data Analysis",
"Results and Discussion",
"Conclusion",
"References",
],
"Research Paper (Other)": [
"Title",
"Publication",
"Journal_Conference",
"Abstract",
"Keywords",
"Author",
"Date_of_Publication",
"Intro",
"Literature_Review",
"Research_Models_Used",
"Methodology",
"Discussion",
"Future_Scope",
"Theory",
"Independent_Variables",
"nof_Independent_Variables",
"Dependent_Variables",
"nof_Dependent_Variables",
"Control_Variables",
"Extraneous_Variables",
"nof_Control_Variables",
"nof_Extraneous_Variables",
],
}
# --------------------------------------------------------------------------------
# 4. Extract Paper Fields
# --------------------------------------------------------------------------------
def extract_paper_fields(text: str, paper_type: str) -> Dict[str, Any]:
"""
Use Gemini to extract fields based on the paper type attributes,
then return a dictionary of extracted fields.
"""
if paper_type not in PAPER_TYPE_ATTRIBUTES:
st.error("Invalid paper type selected.")
return {}
selected_attrs = PAPER_TYPE_ATTRIBUTES[paper_type]
prompt = f"""
Extract the following fields from the research paper text below:
{", ".join(selected_attrs)}
Paper text:
{text}
Return them in this JSON format strictly, with no extra text:
[
{{
{", ".join([f'"{attr}": "value"' for attr in selected_attrs])}
}}
]
"""
try:
response = get_gemini_response(prompt)
if not response:
st.error("No response from Gemini.")
return {}
# Clean up any text around JSON
# Clean up any text around JSON
raw_text = response.strip()
# Find start and end of JSON
json_start = raw_text.find("[")
json_end = raw_text.rfind("]") + 1
json_str = raw_text[json_start:json_end]
# Try removing trailing commas, extra quotes, etc.
json_str = re.sub(r",\s*}", "}", json_str)
json_str = re.sub(r",\s*\]", "]", json_str)
try:
data = json.loads(json_str)
except json.JSONDecodeError as e:
st.warning(f"Fixing JSON errors: {str(e)}")
# As a last-resort attempt, remove anything after the last curly bracket
bracket_pos = json_str.rfind("}")
if bracket_pos != -1:
json_str = json_str[: bracket_pos + 1]
# Try again
data = json.loads(json_str)
if isinstance(data, list) and len(data) > 0:
return data[0]
else:
st.error("Gemini did not return a valid JSON array.")
return {}
except Exception as e:
st.error(f"Error in Gemini extraction: {str(e)}")
return {}
# --------------------------------------------------------------------------------
# 5. Process Paper and Save
# --------------------------------------------------------------------------------
def process_paper(text: str, paper_type: str):
"""
Extract paper fields based on paper type, then save to
the corresponding MongoDB collection.
"""
db = create_db_connection()
if not db:
return
# Determine collection name
collection_name = paper_type.replace(" ", "_").lower()
collection = db[collection_name]
# Extract fields
extracted_data = extract_paper_fields(text, paper_type)
if extracted_data:
# Insert into MongoDB
collection.insert_one(extracted_data)
return extracted_data
return {}
# --------------------------------------------------------------------------------
# 6. Streamlit UI for Paper Extraction
# --------------------------------------------------------------------------------
def main():
# st.set_page_config(page_title="Extract Research Paper", layout="wide")
st.title("Extract Research Paper")
paper_type = st.selectbox(
"Select type of research paper:",
[
"Review Based Paper",
"Opinion/Perspective Based Paper",
"Empirical Research Paper",
"Research Paper (Other)",
],
)
uploaded_file = st.file_uploader("Upload a PDF or text file", type=["pdf", "txt"])
if st.button("Extract & Save") and uploaded_file:
try:
# Read file content
if uploaded_file.type == "application/pdf":
pdf_reader = PyPDF2.PdfReader(uploaded_file)
text_content = ""
for page in pdf_reader.pages:
text_content += page.extract_text()
else:
text_content = uploaded_file.read().decode("utf-8", errors="replace")
with st.spinner("Extracting fields..."):
data = process_paper(text_content, paper_type)
if data:
st.success(
f"Paper extracted and saved to MongoDB in '{paper_type}' collection!"
)
st.write("Extracted fields:")
st.json(data)
except Exception as e:
st.error(f"An error occurred: {str(e)}")
# ...existing code (if any)...
if __name__ == "__main__":
main()
|