Spaces:
Build error
Build error
File size: 111,117 Bytes
b91146d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 |
from collections import defaultdict
import json
import random
import requests
import streamlit as st
from datetime import datetime
from youtube_transcript_api import YouTubeTranscriptApi
from utils.helpers import display_progress_bar, create_notification, format_datetime
from file_upload_vectorize import upload_resource, extract_text_from_file, create_vector_store, resources_collection, model, assignment_submit
from db import courses_collection2, chat_history_collection, students_collection, faculty_collection, vectors_collection
from chatbot import give_chat_response
from bson import ObjectId
from live_polls import LivePollFeature
import pandas as pd
import plotly.express as px
from dotenv import load_dotenv
import os
from pymongo import MongoClient
from gen_mcqs import generate_mcqs, save_quiz, quizzes_collection, get_student_quiz_score, submit_quiz_answers
from create_course import courses_collection
from pre_class_analytics2 import NovaScholarAnalytics
import openai
from openai import OpenAI
import google.generativeai as genai
from goals2 import GoalAnalyzer
from openai import OpenAI
import asyncio
import numpy as np
import re
from analytics import derive_analytics, create_embeddings, cosine_similarity
from bs4 import BeautifulSoup
from rubrics import display_rubrics_tab
from subjective_test_evaluation import evaluate_subjective_answers, display_evaluation_to_faculty
load_dotenv()
MONGO_URI = os.getenv('MONGO_URI')
PERPLEXITY_API_KEY = os.getenv('PERPLEXITY_KEY')
OPENAI_API_KEY = os.getenv('OPENAI_KEY')
client = MongoClient(MONGO_URI)
db = client["novascholar_db"]
polls_collection = db["polls"]
subjective_test_evaluation_collection = db["subjective_test_evaluation"]
assignment_evaluation_collection = db["assignment_evaluation"]
subjective_tests_collection = db["subjective_tests"]
synoptic_store_collection = db["synoptic_store"]
assignments_collection = db["assignments"]
def get_current_user():
if 'current_user' not in st.session_state:
return None
return students_collection.find_one({"_id": st.session_state.user_id})
# def display_preclass_content(session, student_id, course_id):
"""Display pre-class materials for a session"""
# Initialize 'messages' in session_state if it doesn't exist
if 'messages' not in st.session_state:
st.session_state.messages = []
# Display pre-class materials
materials = list(resources_collection.find({"course_id": course_id, "session_id": session['session_id']}))
st.subheader("Pre-class Materials")
if materials:
for material in materials:
with st.expander(f"{material['file_name']} ({material['material_type'].upper()})"):
file_type = material.get('file_type', 'unknown')
if file_type == 'application/pdf':
st.markdown(f"π [Open PDF Document]({material['file_name']})")
if st.button("View PDF", key=f"view_pdf_{material['file_name']}"):
st.text_area("PDF Content", material['text_content'], height=300)
if st.button("Download PDF", key=f"download_pdf_{material['file_name']}"):
st.download_button(
label="Download PDF",
data=material['file_content'],
file_name=material['file_name'],
mime='application/pdf'
)
if st.button("Mark PDF as Read", key=f"pdf_{material['file_name']}"):
create_notification("PDF marked as read!", "success")
else:
st.info("No pre-class materials uploaded by the faculty.")
st.subheader("Upload Pre-class Material")
# File upload section for students
uploaded_file = st.file_uploader("Upload Material", type=['txt', 'pdf', 'docx'])
if uploaded_file is not None:
with st.spinner("Processing document..."):
file_name = uploaded_file.name
file_content = extract_text_from_file(uploaded_file)
if file_content:
material_type = st.selectbox("Select Material Type", ["pdf", "docx", "txt"])
if st.button("Upload Material"):
upload_resource(course_id, session['session_id'], file_name, uploaded_file, material_type)
# Search for the newly uploaded resource's _id in resources_collection
resource_id = resources_collection.find_one({"file_name": file_name})["_id"]
create_vector_store(file_content, resource_id)
st.success("Material uploaded successfully!")
st.subheader("Learn the Topic Using Chatbot")
st.write(f"**Session Title:** {session['title']}")
st.write(f"**Description:** {session.get('description', 'No description available.')}")
# Chatbot interface
if prompt := st.chat_input("Ask a question about the session topic"):
if len(st.session_state.messages) >= 20:
st.warning("Message limit (20) reached for this session.")
return
st.session_state.messages.append({"role": "user", "content": prompt})
# Display User Message
with st.chat_message("user"):
st.markdown(prompt)
# Get response from chatbot
context = ""
for material in materials:
if 'text_content' in material:
context += material['text_content'] + "\n"
response = give_chat_response(student_id, session['session_id'], prompt, session['title'], session.get('description', ''), context)
st.session_state.messages.append({"role": "assistant", "content": response})
# Display Assistant Response
with st.chat_message("assistant"):
st.markdown(response)
# st.subheader("Your Chat History")
# for message in st.session_state.messages:
# content = message.get("content", "") # Default to an empty string if "content" is not present
# role = message.get("role", "user") # Default to "user" if "role" is not present
# with st.chat_message(role):
# st.markdown(content)
# user = get_current_user()
def display_preclass_content(session, student_id, course_id):
"""Display pre-class materials for a session including external resources"""
st.subheader("Pre-class Materials")
print("Session ID is: ", session['session_id'])
# Display uploaded materials
materials = resources_collection.find({"session_id": session['session_id']})
for material in materials:
file_type = material.get('file_type', 'unknown')
# Handle external resources
if file_type == 'external':
with st.expander(f"π {material['file_name']}"):
st.markdown(f"Source: [{material['source_url']}]({material['source_url']})")
if material['material_type'].lower() == 'video':
# Embed YouTube video if it's a YouTube URL
if 'youtube.com' in material['source_url'] or 'youtu.be' in material['source_url']:
video_id = extract_youtube_id(material['source_url'])
if video_id:
st.video(f"https://youtube.com/watch?v={video_id}")
if st.button("View Content", key=f"view_external_{material['_id']}"):
st.text_area("Extracted Content", material['text_content'], height=300)
if st.button("Mark as Read", key=f"external_{material['_id']}"):
create_notification(f"{material['material_type']} content marked as read!", "success")
# Handle traditional file types
else:
with st.expander(f"{material['file_name']} ({material['material_type'].upper()})"):
if file_type == 'application/pdf':
st.markdown(f"π [Open PDF Document]({material['file_name']})")
if st.button("View PDF", key=f"view_pdf_{material['_id']}"):
st.text_area("PDF Content", material['text_content'], height=300)
if st.button("Download PDF", key=f"download_pdf_{material['_id']}"):
st.download_button(
label="Download PDF",
data=material['file_content'],
file_name=material['file_name'],
mime='application/pdf'
)
if st.button("Mark PDF as Read", key=f"pdf_{material['_id']}"):
create_notification("PDF marked as read!", "success")
elif file_type == 'text/plain':
st.markdown(f"π [Open Text Document]({material['file_name']})")
if st.button("View Text", key=f"view_text_{material['_id']}"):
st.text_area("Text Content", material['text_content'], height=300)
if st.button("Download Text", key=f"download_text_{material['_id']}"):
st.download_button(
label="Download Text",
data=material['file_content'],
file_name=material['file_name'],
mime='text/plain'
)
if st.button("Mark Text as Read", key=f"text_{material['_id']}"):
create_notification("Text marked as read!", "success")
elif file_type == 'application/vnd.openxmlformats-officedocument.wordprocessingml.document':
st.markdown(f"π [Open Word Document]({material['file_name']})")
if st.button("View Word", key=f"view_word_{material['_id']}"):
st.text_area("Word Content", material['text_content'], height=300)
if st.button("Download Word", key=f"download_word_{material['_id']}"):
st.download_button(
label="Download Word",
data=material['file_content'],
file_name=material['file_name'],
mime='application/vnd.openxmlformats-officedocument.wordprocessingml.document'
)
if st.button("Mark Word as Read", key=f"word_{material['_id']}"):
create_notification("Word document marked as read!", "success")
elif file_type == 'application/vnd.openxmlformats-officedocument.presentationml.presentation':
st.markdown(f"π [Open PowerPoint Presentation]({material['file_name']})")
if st.button("View PowerPoint", key=f"view_pptx_{material['_id']}"):
st.text_area("PowerPoint Content", material['text_content'], height=300)
if st.button("Download PowerPoint", key=f"download_pptx_{material['_id']}"):
st.download_button(
label="Download PowerPoint",
data=material['file_content'],
file_name=material['file_name'],
mime='application/vnd.openxmlformats-officedocument.presentationml.presentation'
)
if st.button("Mark PowerPoint as Read", key=f"pptx_{material['_id']}"):
create_notification("PowerPoint presentation marked as read!", "success")
# Initialize 'messages' in session_state if it doesn't exist
if 'messages' not in st.session_state:
st.session_state.messages = []
# Chat input
# Add a check, if materials are available, only then show the chat input
if(st.session_state.user_type == "student"):
if materials:
if prompt := st.chat_input("Ask a question about Pre-class Materials"):
# if len(st.session_state.messages) >= 20:
# st.warning("Message limit (20) reached for this session.")
# return
st.session_state.messages.append({"role": "user", "content": prompt})
# Display User Message
with st.chat_message("user"):
st.markdown(prompt)
# Get document context
context = ""
print("Session ID is: ", session['session_id'])
materials = resources_collection.find({"session_id": session['session_id']})
print(materials)
context = ""
vector_data = None
# for material in materials:
# print(material)
context = ""
for material in materials:
resource_id = material['_id']
print("Supposed Resource ID is: ", resource_id)
vector_data = vectors_collection.find_one({"resource_id": resource_id})
# print(vector_data)
if vector_data and 'text' in vector_data:
context += vector_data['text'] + "\n"
if not vector_data:
st.error("No Pre-class materials found for this session.")
return
try:
# Generate response using Gemini
# context_prompt = f"""
# Based on the following context, answer the user's question:
# Context:
# {context}
# Question: {prompt}
# Please provide a clear and concise answer based only on the information provided in the context.
# """
# context_prompt = f"""
# You are a highly intelligent and resourceful assistant capable of synthesizing information from the provided context.
# Context:
# {context}
# Instructions:
# 1. Base your answers primarily on the given context.
# 2. If the answer to the user's question is not explicitly in the context but can be inferred or synthesized from the information provided, do so thoughtfully.
# 3. Only use external knowledge or web assistance when:
# - The context lacks sufficient information, and
# - The question requires knowledge beyond what can be reasonably inferred from the context.
# 4. Clearly state if you are relying on web assistance for any part of your answer.
# 5. Do not respond with a negative. If the answer is not in the context, provide a thoughtful response based on the information available on the web about it.
# Question: {prompt}
# Please provide a clear and comprehensive answer based on the above instructions.
# """
context_prompt = f"""
You are a highly intelligent and resourceful assistant capable of synthesizing information from the provided context and external sources.
Context:
{context}
Instructions:
1. Base your answers on the provided context wherever possible.
2. If the answer to the user's question is not explicitly in the context:
- Use external knowledge or web assistance to provide a clear and accurate response.
3. Do not respond negatively. If the answer is not in the context, use web assistance or your knowledge to generate a thoughtful response.
4. Clearly state if part of your response relies on web assistance.
Question: {prompt}
Please provide a clear and comprehensive answer based on the above instructions.
"""
response = model.generate_content(context_prompt)
if not response or not response.text:
st.error("No response received from the model")
return
assistant_response = response.text
# Display Assistant Response
with st.chat_message("assistant"):
st.markdown(assistant_response)
# Build the message
new_message = {
"prompt": prompt,
"response": assistant_response,
"timestamp": datetime.utcnow()
}
st.session_state.messages.append(new_message)
# Update database
try:
chat_history_collection.update_one(
{
"user_id": student_id,
"session_id": session['session_id']
},
{
"$push": {"messages": new_message},
"$setOnInsert": {
"user_id": student_id,
"session_id": session['session_id'],
"timestamp": datetime.utcnow()
}
},
upsert=True
)
except Exception as db_error:
st.error(f"Error saving chat history: {str(db_error)}")
except Exception as e:
st.error(f"Error generating response: {str(e)}")
else:
st.subheader("Upload Pre-class Material")
# File upload section for students
uploaded_file = st.file_uploader("Upload Material", type=['txt', 'pdf', 'docx'])
if uploaded_file is not None:
with st.spinner("Processing document..."):
file_name = uploaded_file.name
file_content = extract_text_from_file(uploaded_file)
if file_content:
material_type = st.selectbox("Select Material Type", ["pdf", "docx", "txt"])
if st.button("Upload Material"):
upload_resource(course_id, session['session_id'], file_name, uploaded_file, material_type)
# print("Resource ID is: ", resource_id)
# Search for the newly uploaded resource's _id in resources_collection
# resource_id = resources_collection.find_one({"file_name": file_name})["_id"]
st.success("Material uploaded successfully!")
# st.experimental_rerun()
# st.subheader("Your Chat History")
if st.button("View Chat History"):
# Initialize chat messages from database
if 'messages' not in st.session_state or not st.session_state.messages:
existing_chat = chat_history_collection.find_one({
"user_id": student_id,
"session_id": session['session_id']
})
if existing_chat and 'messages' in existing_chat:
st.session_state.messages = existing_chat['messages']
else:
st.session_state.messages = []
# Display existing chat history
try:
for message in st.session_state.messages:
if 'prompt' in message and 'response' in message:
with st.chat_message("user"):
st.markdown(message["prompt"])
with st.chat_message("assistant"):
st.markdown(message["response"])
except Exception as e:
st.error(f"Error displaying chat history: {str(e)}")
st.session_state.messages = []
if st.session_state.user_type == 'student':
st.subheader("Create a Practice Quiz")
questions = []
quiz_id = ""
with st.form("create_quiz_form"):
num_questions = st.number_input("Number of Questions", min_value=1, max_value=20, value=2)
submit_quiz = st.form_submit_button("Generate Quiz")
if submit_quiz:
# Get pre-class materials from resources_collection
materials = resources_collection.find({"session_id": session['session_id']})
context = ""
for material in materials:
if 'text_content' in material:
context += material['text_content'] + "\n"
if not context:
st.error("No pre-class materials found for this session.")
return
# Generate MCQs from context
questions = generate_mcqs(context, num_questions, session['title'], session.get('description', ''))
if questions:
quiz_id = save_quiz(course_id, session['session_id'], "Practice Quiz", questions, student_id)
if quiz_id:
st.success("Quiz saved successfully!")
st.session_state.show_quizzes = True
else:
st.error("Error saving quiz.")
else:
st.error("Error generating questions.")
# if st.button("Attempt Practice Quizzes "):
# quizzes = list(quizzes_collection.find({"course_id": course_id, "session_id": session['session_id'], "user_id": student_id}))
if getattr(st.session_state, 'show_quizzes', False):
# quiz = quizzes_collection.find_one({"course_id": course_id, "session_id": session['session_id'], "user_id": student_id})
quiz = quizzes_collection.find_one(
{"course_id": course_id, "session_id": session['session_id'], "user_id": student_id},
sort=[("created_at", -1)]
)
if not quiz:
st.info("No practice quizzes created.")
else:
with st.expander(f"π Practice Quiz", expanded=False):
# Check if student has already taken this quiz
existing_score = get_student_quiz_score(quiz['_id'], student_id)
if existing_score is not None:
st.success(f"Quiz completed! Your score: {existing_score:.1f}%")
# Display correct answers after submission
st.subheader("Quiz Review")
for i, question in enumerate(quiz['questions']):
st.markdown(f"**Question {i+1}:** {question['question']}")
for opt in question['options']:
if opt.startswith(question['correct_option']):
st.markdown(f"β
{opt}")
else:
st.markdown(f"- {opt}")
else:
# Initialize quiz state for this specific quiz
quiz_key = f"quiz_{quiz['_id']}_student_{student_id}"
if quiz_key not in st.session_state:
st.session_state[quiz_key] = {
'submitted': False,
'score': None,
'answers': {}
}
# If quiz was just submitted, show the results
if st.session_state[quiz_key]['submitted']:
st.success(f"Quiz submitted successfully! Your score: {st.session_state[quiz_key]['score']:.1f}%")
# Reset the quiz state
st.session_state[quiz_key]['submitted'] = False
# Display quiz questions
st.write("Please select your answers:")
# Create a form for quiz submission
form_key = f"quiz_form_{quiz['_id']}_student_{student_id}"
with st.form(key=form_key):
student_answers = {}
for i, question in enumerate(quiz['questions']):
st.markdown(f"**Question {i+1}:** {question['question']}")
options = [opt for opt in question['options']]
# student_answers[str(i)] = st.radio(
# f"Select answer for question {i+1}:",
# options=options,
# key=f"q_{i}",
# index=None
# )
answer = st.radio(
f"Select answer for question {i+1}:",
options=options,
key=f"{quiz['_id']}_{i}", # Simplify the radio button key
index=None
)
if answer: # Only add to answers if a selection was made
student_answers[str(i)] = answer
# Submit button
# submitted = st.form_submit_button("Submit Quiz")
print("Before the submit button")
submit_button = st.form_submit_button("Submit Quiz")
print("After the submit button")
if submit_button and student_answers:
print("Clicked the button")
print(student_answers)
correct_answers = 0
for i, question in enumerate(quiz['questions']):
if student_answers[str(i)] == question['correct_option']:
correct_answers += 1
score = (correct_answers / len(quiz['questions'])) * 100
if score is not None:
st.success(f"Quiz submitted successfully! Your score: {score:.1f}%")
st.session_state[quiz_key]['submitted'] = True
st.session_state[quiz_key]['score'] = score
st.session_state[quiz_key]['answers'] = student_answers
# This will trigger a rerun, but now we'll handle it properly
st.rerun()
else:
st.error("Error submitting quiz. Please try again.")
# correct_answers = 0
# for i, question in enumerate(quiz['questions']):
# if student_answers[str(i)] == question['correct_option']:
# correct_answers += 1
# score = (correct_answers / len(quiz['questions'])) * 100
# print(score)
# try:
# quizzes_collection.update_one(
# {"_id": quiz['_id']},
# {"$push": {"submissions": {"student_id": student_id, "score": score}}}
# )
# st.success(f"Quiz submitted successfully! Your score: {score:.1f}%")
# except Exception as db_error:
# st.error(f"Error saving submission: {str(db_error)}")
def extract_youtube_id(url):
"""Extract YouTube video ID from URL"""
if 'youtube.com' in url:
try:
return url.split('v=')[1].split('&')[0]
except IndexError:
return None
elif 'youtu.be' in url:
try:
return url.split('/')[-1]
except IndexError:
return None
return None
def display_in_class_content(session, user_type):
# """Display in-class activities and interactions"""
"""Display in-class activities and interactions"""
st.header("In-class Activities")
# Initialize Live Polls feature
live_polls = LivePollFeature()
# Display appropriate interface based on user role
if user_type == 'faculty':
live_polls.display_faculty_interface(session['session_id'])
else:
live_polls.display_student_interface(session['session_id'])
def generate_random_assignment_id():
"""Generate a random integer ID for assignments"""
return random.randint(100000, 999999)
def display_post_class_content(session, student_id, course_id):
"""Display post-class assignments and submissions"""
st.header("Post-class Work")
if st.session_state.user_type == 'faculty':
faculty_id = st.session_state.user_id
st.subheader("Create Subjective Test")
# Create a form for test generation
with st.form("create_subjective_test_form"):
test_title = st.text_input("Test Title")
num_subjective_questions = st.number_input("Number of Subjective Questions", min_value=1, value=5)
generation_method = st.radio(
"Question Generation Method",
["Generate from Pre-class Materials", "Generate Random Questions"]
)
generate_test_btn = st.form_submit_button("Generate Test")
# Handle test generation outside the form
if generate_test_btn:
if not test_title:
st.error("Please enter a test title.")
return
context = ""
if generation_method == "Generate from Pre-class Materials":
materials = resources_collection.find({"session_id": session['session_id']})
for material in materials:
if 'text_content' in material:
context += material['text_content'] + "\n"
with st.spinner("Generating questions and synoptic..."):
try:
# Store generated content in session state to persist between rerenders
questions = generate_questions(
context if context else None,
num_subjective_questions,
session['title'],
session.get('description', '')
)
if questions:
synoptic = generate_synoptic(
questions,
context if context else None,
session['title'],
num_subjective_questions
)
if synoptic:
# Store in session state
st.session_state.generated_questions = questions
st.session_state.generated_synoptic = synoptic
st.session_state.test_title = test_title
# Display preview
st.subheader("Preview Subjective Questions and Synoptic")
for i, (q, s) in enumerate(zip(questions, synoptic), 1):
st.markdown(f"**Question {i}:** {q['question']}")
with st.expander(f"View Synoptic {i}"):
st.markdown(s)
# Save button outside the form
if st.button("Save Test"):
test_id = save_subjective_test(
course_id,
session['session_id'],
test_title,
questions
)
if test_id:
st.success("Subjective test saved successfully!")
else:
st.error("Error saving subjective test.")
else:
st.error("Error generating synoptic answers. Please try again.")
else:
st.error("Error generating questions. Please try again.")
except Exception as e:
st.error(f"An error occurred: {str(e)}")
# Display previously generated test if it exists in session state
elif hasattr(st.session_state, 'generated_questions') and hasattr(st.session_state, 'generated_synoptic'):
st.subheader("Preview Subjective Questions and Synoptic")
for i, (q, s) in enumerate(zip(st.session_state.generated_questions, st.session_state.generated_synoptic), 1):
st.markdown(f"**Question {i}:** {q['question']}")
with st.expander(f"View Synoptic {i}"):
st.markdown(s)
if st.button("Save Test"):
test_id = save_subjective_test(
course_id,
session['session_id'],
st.session_state.test_title,
st.session_state.generated_questions,
)
if test_id:
st.success("Subjective test saved successfully!")
# Clear session state after successful save
del st.session_state.generated_questions
del st.session_state.generated_synoptic
del st.session_state.test_title
else:
st.error("Error saving subjective test.")
# st.subheader("Create quiz section UI for faculty")
st.subheader("Create Quiz")
questions = []
with st.form("create_quiz_form"):
quiz_title = st.text_input("Quiz Title")
num_questions = st.number_input("Number of Questions", min_value=1, max_value=20, value=5)
# Option to choose quiz generation method
generation_method = st.radio(
"Question Generation Method",
["Generate from Pre-class Materials", "Generate Random Questions"]
)
submit_quiz = st.form_submit_button("Generate Quiz")
if submit_quiz:
if generation_method == "Generate from Pre-class Materials":
# Get pre-class materials from resources_collection
materials = resources_collection.find({"session_id": session['session_id']})
context = ""
for material in materials:
if 'text_content' in material:
context += material['text_content'] + "\n"
if not context:
st.error("No pre-class materials found for this session.")
return
# Generate MCQs from context
questions = generate_mcqs(context, num_questions, session['title'], session.get('description', ''))
else:
# Generate random MCQs based on session title and description
questions = generate_mcqs(None, num_questions, session['title'], session.get('description', ''))
print(questions)
if questions:
# Preview generated questions
st.subheader("Preview Generated Questions")
for i, q in enumerate(questions, 1):
st.markdown(f"**Question {i}:** {q['question']}")
for opt in q['options']:
st.markdown(f"- {opt}")
st.markdown(f"*Correct Answer: {q['correct_option']}*")
# Save quiz
quiz_id = save_quiz(course_id, session['session_id'], quiz_title, questions, faculty_id)
if quiz_id:
st.success("Quiz saved successfully!")
else:
st.error("Error saving quiz.")
st.subheader("Add Assignment")
with st.form("add_assignment_form"):
title = st.text_input("Assignment Title")
description = st.text_area("Assignment Description")
due_date = st.date_input("Due Date")
submit = st.form_submit_button("Add Assignment")
if submit:
if not title or not description:
st.error("Please fill in all required fields.")
return
due_date = datetime.combine(due_date, datetime.min.time())
assignment = {
"_id": ObjectId(),
"title": title,
"description": description,
"due_date": due_date,
"course_id": course_id,
"session_id": session['session_id'],
"faculty_id": faculty_id,
"created_at": datetime.utcnow(),
"status": "active",
"submissions": []
}
assignments_collection.insert_one(assignment)
st.success("Assignment added successfully!")
st.subheader("Existing Assignments")
assignments = assignments_collection.find({
"session_id": session['session_id'],
"course_id": course_id
})
for assignment in assignments:
with st.expander(f"π {assignment['title']}", expanded=True):
st.markdown(f"**Due Date:** {assignment['due_date'].strftime('%Y-%m-%d')}")
st.markdown(f"**Description:** {assignment['description']}")
total_submissions = len(assignment.get('submissions', []))
total_students = students_collection.count_documents({
"enrolled_courses": {
"$elemMatch": {"course_id": course_id}
}
})
col1, col2, col3 = st.columns(3)
with col1:
st.metric("Total Submissions", total_submissions)
with col2:
submission_rate = (total_submissions / total_students * 100) if total_students > 0 else 0
st.metric("Submission Rate", f"{submission_rate:.1f}%")
with col3:
st.metric("Pending Submissions", total_students - total_submissions)
# Display evaluation button and status
evaluation_status = st.empty()
eval_button = st.button("View/Generate Evaluations", key=f"eval_{assignment['_id']}")
if eval_button:
st.session_state.show_evaluations = True
st.session_state.current_assignment = assignment['_id']
# Show evaluation interface in a new container instead of an expander
evaluation_container = st.container()
with evaluation_container:
from assignment_evaluation import display_evaluation_to_faculty
display_evaluation_to_faculty(session['session_id'], student_id, course_id)
else: # Student view
assignments = assignments_collection.find({
"session_id": session['session_id'],
"course_id": course_id,
"status": "active"
})
for assignment in assignments:
with st.expander(f"π {assignment['title']}", expanded=True):
st.markdown(f"**Due Date:** {assignment['due_date'].strftime('%Y-%m-%d')}")
st.markdown(f"**Description:** {assignment['description']}")
existing_submission = next(
(sub for sub in assignment.get('submissions', [])
if sub['student_id'] == str(student_id)),
None
)
if existing_submission:
st.success("Assignment submitted!")
st.markdown(f"**Submitted on:** {existing_submission['submitted_at'].strftime('%Y-%m-%d %H:%M')}")
# Show evaluation status and feedback in the same container
evaluation = assignment_evaluation_collection.find_one({
"assignment_id": assignment['_id'],
"student_id": str(student_id)
})
if evaluation:
st.markdown("### Evaluation")
st.markdown(evaluation['evaluation'])
else:
st.info("Evaluation pending. Check back later.")
else:
uploaded_file = st.file_uploader(
"Upload your work",
type=['pdf', 'doc', 'docx', 'txt', 'py', 'ipynb', 'ppt', 'pptx'],
key=f"upload_{assignment['_id']}"
)
if uploaded_file is not None:
if st.button("Submit Assignment", key=f"submit_{assignment['_id']}"):
text_content = extract_text_from_file(uploaded_file)
submission = {
"student_id": str(student_id),
"file_name": uploaded_file.name,
"file_type": uploaded_file.type,
"file_content": uploaded_file.getvalue(),
"text_content": text_content,
"submitted_at": datetime.utcnow()
}
assignments_collection.update_one(
{"_id": assignment['_id']},
{"$push": {"submissions": submission}}
)
st.success("Assignment submitted successfully!")
st.rerun()
def display_inclass_analytics(session, course_id):
"""Display in-class analytics for faculty"""
st.subheader("In-class Analytics")
# Get all enrolled students count for participation rate calculation
total_students = students_collection.count_documents({
"enrolled_courses": {
"$elemMatch": {"course_id": course_id}
}
})
if total_students == 0:
st.warning("No students enrolled in this course.")
return
# Get all polls for this session
polls = polls_collection.find({
"session_id": session['session_id']
})
polls_list = list(polls)
if not polls_list:
st.warning("No polls have been conducted in this session yet.")
return
# Overall Poll Participation Metrics
st.markdown("### Overall Poll Participation")
# Calculate overall participation metrics
total_polls = len(polls_list)
participating_students = set()
poll_participation_data = []
for poll in polls_list:
respondents = set(poll.get('respondents', []))
participating_students.update(respondents)
poll_participation_data.append({
'Poll Title': poll.get('question', 'Untitled Poll'),
'Respondents': len(respondents),
'Participation Rate': (len(respondents) / total_students * 100)
})
# Display summary metrics
col1, col2, col3 = st.columns(3)
with col1:
st.metric("Total Polls Conducted", total_polls)
with col2:
st.metric("Active Participants", len(participating_students))
with col3:
avg_participation = sum(p['Participation Rate'] for p in poll_participation_data) / total_polls
st.metric("Average Participation Rate", f"{avg_participation:.1f}%")
# Participation Trend Graph
# st.markdown("### Poll Participation Trends")
# participation_df = pd.DataFrame(poll_participation_data)
# # Create line chart for participation trends
# fig = px.line(participation_df,
# x='Poll Title',
# y='Participation Rate',
# title='Poll Participation Rates Over Time',
# markers=True)
# fig.update_layout(
# xaxis_title="Polls",
# yaxis_title="Participation Rate (%)",
# yaxis_range=[0, 100]
# )
# st.plotly_chart(fig)
# Individual Poll Results
st.markdown("### Individual Poll Results")
for poll in polls_list:
with st.expander(f"π {poll.get('question', 'Untitled Poll')}"):
responses = poll.get('responses', {})
respondents = poll.get('respondents', [])
# Calculate metrics for this poll
response_count = len(respondents)
participation_rate = (response_count / total_students) * 100
# Display poll metrics
col1, col2 = st.columns(2)
with col1:
st.metric("Total Responses", response_count)
with col2:
st.metric("Participation Rate", f"{participation_rate:.1f}%")
if responses:
# Create DataFrame for responses
response_df = pd.DataFrame(list(responses.items()),
columns=['Option', 'Votes'])
response_df['Percentage'] = (response_df['Votes'] / response_df['Votes'].sum() * 100).round(1)
# Display response distribution
fig = px.bar(response_df,
x='Option',
y='Votes',
title='Response Distribution',
text='Percentage')
fig.update_traces(texttemplate='%{text:.1f}%', textposition='outside')
st.plotly_chart(fig)
# Display detailed response table
st.markdown("#### Detailed Response Breakdown")
response_df['Percentage'] = response_df['Percentage'].apply(lambda x: f"{x}%")
st.table(response_df)
# Non-participating students
non_participants = list(students_collection.find({
"courses": course_id,
"_id": {"$nin": respondents}
}))
if non_participants:
st.markdown("#### Students Who Haven't Participated")
non_participant_data = [{
'Name': student.get('name', 'Unknown'),
'SID': student.get('sid', 'Unknown')
} for student in non_participants]
st.table(pd.DataFrame(non_participant_data))
# Export functionality for participation data
st.markdown("### Export Analytics")
if st.button("Download Poll Analytics Report"):
# Create a more detailed DataFrame for export
export_data = []
for poll in polls_list:
poll_data = {
'Poll Question': poll.get('question', 'Untitled'),
'Total Responses': len(poll.get('respondents', [])),
'Participation Rate': f"{(len(poll.get('respondents', [])) / total_students * 100):.1f}%"
}
# Add response distribution
for option, votes in poll.get('responses', {}).items():
poll_data[f"Option: {option}"] = votes
export_data.append(poll_data)
export_df = pd.DataFrame(export_data)
csv = export_df.to_csv(index=False).encode('utf-8')
st.download_button(
"π₯ Download Complete Report",
csv,
"poll_analytics.csv",
"text/csv",
key='download-csv'
)
def display_postclass_analytics(session, course_id):
"""Display post-class analytics for faculty"""
st.subheader("Post-class Analytics")
# Get all assignments for this session
session_data = courses_collection2.find_one(
{"sessions.session_id": session['session_id']},
{"sessions.$": 1}
)
if not session_data or 'sessions' not in session_data:
st.warning("No assignments found for this session.")
return
assignments = session_data['sessions'][0].get('post_class', {}).get('assignments', [])
for assignment in assignments:
with st.expander(f"π Assignment: {assignment.get('title', 'Untitled')}"):
# Get submission analytics
submissions = assignment.get('submissions', [])
# total_students = students_collection.count_documents({"courses": session['course_id']})
total_students = students_collection.count_documents({
"enrolled_courses": {
"$elemMatch": {"course_id": course_id}
}
})
# Calculate submission metrics
submitted_count = len(submissions)
submission_rate = (submitted_count / total_students) * 100 if total_students > 0 else 0
# Display metrics
col1, col2, col3 = st.columns(3)
with col1:
st.metric("Submissions Received", submitted_count)
with col2:
st.metric("Submission Rate", f"{submission_rate:.1f}%")
with col3:
st.metric("Pending Submissions", total_students - submitted_count)
# Display submission timeline
if submissions:
submission_dates = [sub.get('submitted_at') for sub in submissions if 'submitted_at' in sub]
if submission_dates:
df = pd.DataFrame(submission_dates, columns=['Submission Date'])
fig = px.histogram(df, x='Submission Date',
title='Submission Timeline',
labels={'Submission Date': 'Date', 'count': 'Number of Submissions'})
st.plotly_chart(fig)
# Display submission status breakdown
status_counts = {
'pending': total_students - submitted_count,
'submitted': submitted_count,
'late': len([sub for sub in submissions if sub.get('is_late', False)])
}
st.markdown("### Submission Status Breakdown")
status_df = pd.DataFrame(list(status_counts.items()),
columns=['Status', 'Count'])
st.bar_chart(status_df.set_index('Status'))
# List of students who haven't submitted
if status_counts['pending'] > 0:
st.markdown("### Students with Pending Submissions")
# submitted_ids = [sub.get('student_id') for sub in submissions]
submitted_ids = [ObjectId(sub.get('student_id')) for sub in submissions]
print(submitted_ids)
pending_students = students_collection.find({
"enrolled_courses.course_id": course_id,
"_id": {"$nin": submitted_ids}
})
print(pending_students)
for student in pending_students:
st.markdown(f"- {student.get('full_name', 'Unknown Student')} (SID: {student.get('SID', 'Unknown SID')})")
def get_chat_history(user_id, session_id):
query = {
"user_id": ObjectId(user_id),
"session_id": session_id,
"timestamp": {"$lte": datetime.utcnow()}
}
result = chat_history_collection.find(query)
return list(result)
def get_response_from_llm(raw_data):
messages = [
{
"role": "system",
"content": "You are an AI that refines raw analytics data into actionable insights for faculty reports."
},
{
"role": "user",
"content": f"""
Based on the following analytics data, refine and summarize the insights:
Raw Data:
{raw_data}
Instructions:
1. Group similar topics together under appropriate categories.
2. Remove irrelevant or repetitive entries.
3. Summarize the findings into actionable insights.
4. Provide concise recommendations for improvement based on the findings.
Output:
Provide a structured response with the following format:
{{
"Low Engagement Topics": ["List of Topics"],
"Frustration Areas": ["List of areas"],
"Recommendations": ["Actionable recommendations"],
}}
"""
}
]
try:
client = OpenAI(api_key=OPENAI_API_KEY)
response = client.chat.completions.create(
model="gpt-4o-mini",
messages=messages,
temperature=0.2
)
content = response.choices[0].message.content
return json.loads(content)
except Exception as e:
st.error(f"Error generating response: {str(e)}")
return None
import typing_extensions as typing
from typing import Union, List, Dict
# class Topics(typing.TypedDict):
# overarching_theme: List[Dict[str, Union[str, List[Dict[str, Union[str, List[str]]]]]]]
# indirect_topics: List[Dict[str, str]]
def extract_topics_from_materials(session):
"""Extract topics from pre-class materials"""
materials = resources_collection.find({"session_id": session['session_id']})
texts = ""
if materials:
for material in materials:
if 'text_content' in material:
text = material['text_content']
texts += text + "\n"
else:
st.warning("No text content found in the material.")
return
else:
st.error("No pre-class materials found for this session.")
return
if texts:
context_prompt = f"""
Task: Extract Comprehensive Topics in a List Format
You are tasked with analyzing the provided text content and extracting a detailed, flat list of topics.
Instructions:
Identify All Topics: Extract a comprehensive list of all topics, subtopics, and indirect topics present in the provided text content. This list should include:
Overarching themes
Main topics
Subtopics and their sub-subtopics
Indirectly related topics
Flat List Format: Provide a flat list where each item is a topic. Ensure topics at all levels (overarching, main, sub, sub-sub, indirect) are represented as individual entries in the list.
Be Exhaustive: Ensure the response captures every topic, subtopic, and indirectly related concept comprehensively.
Output Requirements:
Use this structure:
{{
"topics": [
"Topic 1",
"Topic 2",
"Topic 3",
...
]
}}
Do Not Include: Do not include backticks, hierarchical structures, or the word 'json' in your response.
Content to Analyze:
{texts}
"""
try:
# response = model.generate_content(context_prompt, generation_config=genai.GenerationConfig(response_mime_type="application/json", response_schema=list[Topics]))
response = model.generate_content(context_prompt, generation_config=genai.GenerationConfig(temperature=0.3))
if not response or not response.text:
st.error("Error extracting topics from materials.")
return
topics = response.text
return topics
except Exception as e:
st.error(f"Error extracting topics: {str(e)}")
return None
else:
st.error("No text content found in the pre-class materials.")
return None
def convert_json_to_dict(json_str):
try:
return json.loads(json_str)
except Exception as e:
st.error(f"Error converting JSON to dictionary. {str(e)}")
return None
# Load topics from a JSON file
# topics = []
# with open(r'topics.json', 'r') as file:
# topics = json.load(file)
def get_preclass_analytics(session):
# Earlier Code:
# """Get all user_ids from chat_history collection where session_id matches"""
# user_ids = chat_history_collection.distinct("user_id", {"session_id": session['session_id']})
# print(user_ids)
# session_id = session['session_id']
# all_chat_histories = []
# for user_id in user_ids:
# result = get_chat_history(user_id, session_id)
# if result:
# for record in result:
# chat_history = {
# "user_id": record["user_id"],
# "session_id": record["session_id"],
# "messages": record["messages"]
# }
# all_chat_histories.append(chat_history)
# else:
# st.warning("No chat history found for this session.")
# # Pass the pre-class materials content to the analytics engine
# topics = extract_topics_from_materials(session)
# # dict_topics = convert_json_to_dict(topics)
# print(topics)
# # # Use the 1st analytics engine
# # analytics_engine = NovaScholarAnalytics(all_topics_list=topics)
# # # extracted_topics = analytics_engine._extract_topics(None, topics)
# # # print(extracted_topics)
# # results = analytics_engine.process_chat_history(all_chat_histories)
# # faculty_report = analytics_engine.generate_faculty_report(results)
# # print(faculty_report)
# # # Pass this Faculty Report to an LLM model for refinements and clarity
# # refined_report = get_response_from_llm(faculty_report)
# # return refined_report
# # Use the 2nd analytice engine (using LLM):
fallback_analytics = {
"topic_insights": [],
"student_insights": [],
"recommended_actions": [
{
"action": "Review analytics generation process",
"priority": "high",
"target_group": "system_administrators",
"reasoning": "Analytics generation failed",
"expected_impact": "Restore analytics functionality"
}
],
"course_health": {
"overall_engagement": 0,
"critical_topics": [],
"class_distribution": {
"high_performers": 0,
"average_performers": 0,
"at_risk": 0
}
},
"intervention_metrics": {
"immediate_attention_needed": [],
"monitoring_required": []
}
}
# analytics_generator = NovaScholarAnalytics()
# analytics2 = analytics_generator.generate_analytics(all_chat_histories, topics)
# # enriched_analytics = analytics_generator._enrich_analytics(analytics2)
# print("Analytics is: ", analytics2)
# if analytics2 == fallback_analytics:
# return None
# else:
# return analytics2
# # print(json.dumps(analytics, indent=2))
# New Code:
# Debug print 1: Check session
print("Starting get_preclass_analytics with session:", session['session_id'])
user_ids = chat_history_collection.distinct("user_id", {"session_id": session['session_id']})
# Debug print 2: Check user_ids
print("Found user_ids:", user_ids)
all_chat_histories = []
for user_id in user_ids:
result = get_chat_history(user_id, session['session_id'])
# Debug print 3: Check each chat history result
print(f"Chat history for user {user_id}:", "Found" if result else "Not found")
if result:
for record in result:
chat_history = {
"user_id": record["user_id"],
"session_id": record["session_id"],
"messages": record["messages"]
}
all_chat_histories.append(chat_history)
# Debug print 4: Check chat histories
print("Total chat histories collected:", len(all_chat_histories))
# Extract topics with debug print
topics = extract_topics_from_materials(session)
# Debug print 5: Check topics
print("Extracted topics:", topics)
if not topics:
print("Topics extraction failed") # Debug print 6
return None
analytics_generator = NovaScholarAnalytics()
analytics2 = analytics_generator.generate_analytics(all_chat_histories, topics)
# Debug print 7: Check analytics
print("Generated analytics:", analytics2)
if analytics2 == fallback_analytics:
print("Fallback analytics returned") # Debug print 8
return None
else:
return analytics2
# Load Analytics from a JSON file
# analytics = []
# with open(r'new_analytics2.json', 'r') as file:
# analytics = json.load(file)
def display_preclass_analytics2(session, course_id):
# Earlier Code:
# Initialize or get analytics data from session state
# if 'analytics_data' not in st.session_state:
# st.session_state.analytics_data = get_preclass_analytics(session)
# analytics = st.session_state.analytics_data
# print(analytics)
# New Code:
# Initialize or get analytics data from session state
if 'analytics_data' not in st.session_state:
# Add debug prints
analytics_data = get_preclass_analytics(session)
if analytics_data is None:
st.info("Fetching new analytics data...")
if analytics_data is None:
st.error("Failed to generate analytics. Please check the following:")
st.write("1. Ensure pre-class materials contain text content")
st.write("2. Verify chat history exists for this session")
st.write("3. Check if topic extraction was successful")
return
st.session_state.analytics_data = analytics_data
analytics = st.session_state.analytics_data
# Validate analytics data structure
if not isinstance(analytics, dict):
st.error(f"Invalid analytics data type: {type(analytics)}")
return
required_keys = ["topic_wise_insights", "ai_recommended_actions", "student_analytics"]
missing_keys = [key for key in required_keys if key not in analytics]
if missing_keys:
st.error(f"Missing required keys in analytics data: {missing_keys}")
return
# Initialize topic indices only if we have valid data
if 'topic_indices' not in st.session_state:
try:
st.session_state.topic_indices = list(range(len(analytics["topic_wise_insights"])))
except Exception as e:
st.error(f"Error creating topic indices: {str(e)}")
st.write("Analytics data structure:", analytics)
return
# Enhanced CSS for better styling and interactivity
st.markdown("""
<style>
/* General styles */
.section-title {
color: #1a237e;
font-size: 1.5rem;
font-weight: 600;
margin-top: 1rem 0 1rem 0;
}
/* Topic list styles */
.topic-list {
max-width: 800px;
margin: 0 auto;
}
.topic-header {
background-color: #ffffff;
border: 1px solid #e0e0e0;
border-radius: 8px;
padding: 1rem 1.25rem;
margin: 0.5rem 0;
cursor: pointer;
display: flex;
align-items: center;
justify-content: space-between;
transition: all 0.2s ease;
}
.topic-header:hover {
background-color: #f8fafc;
transform: translateX(5px);
}
.topic-header h3 {
color: #1e3a8a;
font-size: 1.1rem;
font-weight: 500;
margin: 0;
}
.topic-struggling-rate {
background-color: #dbeafe;
padding: 0.25rem 0.75rem;
border-radius: 16px;
font-size: 0.85rem;
color: #1e40af;
}
.topic-content {
background-color: #ffffff;
border: 1px solid #e0e0e0;
border-top: none;
border-radius: 0 0 8px 8px;
padding: 1.25rem;
margin-top: -0.5rem;
margin-bottom: 1rem;
}
.topic-content .section-heading {
color: #2c5282;
font-size: 1rem;
font-weight: 600;
margin: 1rem 0 0.5rem 0;
}
.topic-content ul {
margin: 0;
padding-left: 1.25rem;
font-size: 0.85rem;
color: #4a5568;
}
/* Recommendation card styles */
.recommendation-grid {
display: grid;
grid-template-columns: repeat(auto-fit, minmax(300px, 1fr));
gap: 1rem;
margin: 1rem 0;
}
.recommendation-card {
background-color: #f8fafc;
border-radius: 8px;
padding: 1.25rem;
border-left: 4px solid #3b82f6;
margin-bottom: 1rem;
}
.recommendation-card h4 {
color: #1e40af;
font-size: 1rem;
font-weight: 600;
margin-bottom: 0;
display: flex;
align-items: center;
gap: 0.5rem;
}
.recommendation-card .priority-badge {
font-size: 0.75rem;
padding: 0.25rem 0.5rem;
border-radius: 4px;
background-color: #dbeafe;
color: #1e40af;
text-transform: uppercase;
}
/* Student analytics styles */
.student-filters {
background-color: #f8fafc;
padding: 1rem;
border-radius: 8px;
margin-bottom: 1rem;
}
.analytics-grid {
display: grid;
grid-template-columns: repeat(auto-fit, minmax(250px, 1fr));
gap: 1rem;
margin-top: 1rem;
}
.student-metrics-card {
background-color: #ffffff;
border-radius: 8px;
padding: 1rem;
border: 1px solid #e5e7eb;
margin-bottom: 1rem;
}
.student-metrics-card .header {
display: flex;
justify-content: space-between;
align-items: center;
margin-bottom: 0.75rem;
}
.student-metrics-card .student-id {
color: #1e40af;
font-size: 1rem;
font-weight: 600;
}
.student-metrics-card .metrics-grid {
display: grid;
grid-template-columns: repeat(2, 1fr);
gap: 0.75rem;
}
.metric-box {
background-color: #f8fafc;
padding: 0.75rem;
border-radius: 6px;
}
.metric-box .label {
font-size: 0.9rem;
color: #6b7280;
margin-bottom: 0.25rem;
font-weight: 500;
}
.metric-box .value {
font-size: 0.9rem;
color: #1f2937;
font-weight: 600;
}
.struggling-topics {
grid-column: span 2;
margin-top: 0.5rem;
}
.struggling-topics .label{
font-size: 0.9rem;
font-weight: 600;
}
.struggling-topics .value{
font-size: 0.9rem;
font-weight: 500;
}
.recommendation-text {
grid-column: span 2;
font-size: 0.95rem;
color: #4b5563;
margin-top: 0.75rem;
padding-top: 0.75rem;
border-top: 1px solid #e5e7eb;
}
.reason{
font-size: 1rem;
font-weight: 600;
}
</style>
""", unsafe_allow_html=True)
# Topic-wise Analytics Section
st.markdown('<h2 class="section-title">Topic-wise Analytics</h2>', unsafe_allow_html=True)
# Initialize session state for topic expansion
if 'expanded_topic' not in st.session_state:
st.session_state.expanded_topic = None
# Store topic indices in session state if not already done
if 'topic_indices' not in st.session_state:
st.session_state.topic_indices = list(range(len(analytics["topic_wise_insights"])))
if st.session_state.topic_indices:
st.markdown('<div class="topic-list">', unsafe_allow_html=True)
for idx in st.session_state.topic_indices:
topic = analytics["topic_wise_insights"][idx]
topic_id = f"topic_{idx}"
# Create clickable header
col1, col2 = st.columns([3, 1])
with col1:
if st.button(
topic["topic"],
key=f"topic_button_{idx}",
use_container_width=True,
type="secondary"
):
st.session_state.expanded_topic = topic_id if st.session_state.expanded_topic != topic_id else None
with col2:
st.markdown(f"""
<div style="text-align: right;">
<span class="topic-struggling-rate">{topic["struggling_percentage"]*100:.1f}% Struggling</span>
</div>
""", unsafe_allow_html=True)
# Show content if topic is expanded
if st.session_state.expanded_topic == topic_id:
st.markdown(f"""
<div class="topic-content">
<div class="section-heading">Key Issues</div>
<ul>
{"".join([f"<li>{issue}</li>" for issue in topic["key_issues"]])}
</ul>
<div class="section-heading">Key Misconceptions</div>
<ul>
{"".join([f"<li>{misc}</li>" for misc in topic["key_misconceptions"]])}
</ul>
</div>
""", unsafe_allow_html=True)
st.markdown('</div>', unsafe_allow_html=True)
# AI Recommendations Section
st.markdown('<h2 class="section-title">AI-Powered Recommendations</h2>', unsafe_allow_html=True)
st.markdown('<div class="recommendation-grid">', unsafe_allow_html=True)
for idx, rec in enumerate(analytics["ai_recommended_actions"]):
st.markdown(f"""
<div class="recommendation-card">
<h4>
<span>Recommendation {idx + 1}</span>
<span class="priority-badge">{rec["priority"]}</span>
</h4>
<p>{rec["action"]}</p>
<p><span class="reason">Reason:</span> {rec["reasoning"]}</p>
<p><span class="reason">Expected Outcome:</span> {rec["expected_outcome"]}</p>
</div>
""", unsafe_allow_html=True)
st.markdown('</div>', unsafe_allow_html=True)
# Student Analytics Section
st.markdown('<h2 class="section-title">Student Analytics</h2>', unsafe_allow_html=True)
# Filters
with st.container():
# st.markdown('<div class="student-filters">', unsafe_allow_html=True)
col1, col2, col3 = st.columns(3)
with col1:
concept_understanding = st.selectbox(
"Filter by Understanding",
["All", "Strong", "Moderate", "Needs Improvement"]
)
with col2:
participation_level = st.selectbox(
"Filter by Participation",
["All", "High (>80%)", "Medium (50-80%)", "Low (<50%)"]
)
with col3:
struggling_topic = st.selectbox(
"Filter by Struggling Topic",
["All"] + list(set([topic for student in analytics["student_analytics"]
for topic in student["struggling_topics"]]))
)
# st.markdown('</div>', unsafe_allow_html=True)
# Display student metrics in a grid
st.markdown('<div class="analytics-grid">', unsafe_allow_html=True)
for student in analytics["student_analytics"]:
# Apply filters
if (concept_understanding != "All" and
student["engagement_metrics"]["concept_understanding"].replace("_", " ").title() != concept_understanding):
continue
participation = student["engagement_metrics"]["participation_level"] * 100
if participation_level != "All":
if participation_level == "High (>80%)" and participation <= 80:
continue
elif participation_level == "Medium (50-80%)" and (participation < 50 or participation > 80):
continue
elif participation_level == "Low (<50%)" and participation >= 50:
continue
if struggling_topic != "All" and struggling_topic not in student["struggling_topics"]:
continue
st.markdown(f"""
<div class="student-metrics-card">
<div class="header">
<span class="student-id">Student {student["student_id"][-6:]}</span>
</div>
<div class="metrics-grid">
<div class="metric-box">
<div class="label">Participation</div>
<div class="value">{student["engagement_metrics"]["participation_level"]*100:.1f}%</div>
</div>
<div class="metric-box">
<div class="label">Understanding</div>
<div class="value">{student["engagement_metrics"]["concept_understanding"].replace('_', ' ').title()}</div>
</div>
<div class="struggling-topics">
<div class="label">Struggling Topics: </div>
<div class="value">{", ".join(student["struggling_topics"]) if student["struggling_topics"] else "None"}</div>
</div>
<div class="recommendation-text">
{student["personalized_recommendation"]}
</div>
</div>
</div>
""", unsafe_allow_html=True)
st.markdown('</div>', unsafe_allow_html=True)
def reset_analytics_state():
"""
Helper function to reset the analytics state when needed
(e.g., when loading a new session or when data needs to be refreshed)
"""
if 'analytics_data' in st.session_state:
del st.session_state.analytics_data
if 'expanded_topic' in st.session_state:
del st.session_state.expanded_topic
if 'topic_indices' in st.session_state:
del st.session_state.topic_indice
def display_session_analytics(session, course_id):
"""Display session analytics for faculty"""
st.header("Session Analytics")
# Display Pre-class Analytics
display_preclass_analytics2(session, course_id)
# Display In-class Analytics
display_inclass_analytics(session, course_id)
# Display Post-class Analytics
display_postclass_analytics(session, course_id)
# def upload_preclass_materials(session_id, course_id):
# """Upload pre-class materials for a session"""
# st.subheader("Upload Pre-class Materials")
# # File upload section
# uploaded_file = st.file_uploader("Upload Material", type=['txt', 'pdf', 'docx'])
# if uploaded_file is not None:
# with st.spinner("Processing document..."):
# file_name = uploaded_file.name
# file_content = extract_text_from_file(uploaded_file)
# if file_content:
# material_type = st.selectbox("Select Material Type", ["pdf", "docx", "txt"])
# if st.button("Upload Material"):
# upload_resource(course_id, session_id, file_name, uploaded_file, material_type)
# # Search for the newly uploaded resource's _id in resources_collection
# resource_id = resources_collection.find_one({"file_name": file_name})["_id"]
# create_vector_store(file_content, resource_id)
# st.success("Material uploaded successfully!")
# # Display existing materials
# materials = resources_collection.find({"course_id": course_id, "session_id": session_id})
# for material in materials:
# st.markdown(f"""
# * **{material['file_name']}** ({material['material_type']})
# Uploaded on: {material['uploaded_at'].strftime('%Y-%m-%d %H:%M')}
# """)
def upload_preclass_materials(session_id, course_id):
"""Upload pre-class materials and manage external resources for a session"""
st.subheader("Pre-class Materials Management")
# Create tabs for different functionalities
upload_tab, external_tab = st.tabs(["Upload Materials", "External Resources"])
with upload_tab:
# Original file upload functionality
uploaded_file = st.file_uploader("Upload Material", type=['txt', 'pdf', 'docx'])
if uploaded_file is not None:
with st.spinner("Processing document..."):
file_name = uploaded_file.name
file_content = extract_text_from_file(uploaded_file)
if file_content:
material_type = st.selectbox("Select Material Type", ["pdf", "docx", "txt"])
if st.button("Upload Material"):
upload_resource(course_id, session_id, file_name, uploaded_file, material_type)
st.success("Material uploaded successfully!")
with external_tab:
# Fetch and display external resources
session_data = courses_collection.find_one(
{"course_id": course_id, "sessions.session_id": session_id},
{"sessions.$": 1}
)
if session_data and session_data.get('sessions'):
session = session_data['sessions'][0]
external = session.get('external_resources', {})
# Display web articles
if 'readings' in external:
st.subheader("Web Articles and Videos")
for reading in external['readings']:
col1, col2 = st.columns([3, 1])
with col1:
st.markdown(f"**{reading['title']}**")
st.markdown(f"Type: {reading['type']} | Est. time: {reading['estimated_read_time']}")
st.markdown(f"URL: [{reading['url']}]({reading['url']})")
with col2:
if st.button("Extract Content", key=f"extract_{reading['url']}"):
with st.spinner("Extracting content..."):
content = extract_external_content(reading['url'], reading['type'])
if content:
resource_id = upload_external_resource(
course_id,
session_id,
reading['title'],
content,
reading['type'].lower(),
reading['url']
)
st.success("Content extracted and stored successfully!")
# Display books
if 'books' in external:
st.subheader("Recommended Books")
for book in external['books']:
st.markdown(f"""
**{book['title']}** by {book['author']}
- ISBN: {book['isbn']}
- Chapters: {book['chapters']}
""")
# Display additional resources
if 'additional_resources' in external:
st.subheader("Additional Resources")
for resource in external['additional_resources']:
st.markdown(f"""
**{resource['title']}** ({resource['type']})
- {resource['description']}
- URL: [{resource['url']}]({resource['url']})
""")
def extract_external_content(url, content_type):
"""Extract content from external resources based on their type"""
try:
if content_type.lower() == 'video' and 'youtube.com' in url:
return extract_youtube_transcript(url)
else:
return extract_web_article(url)
except Exception as e:
st.error(f"Error extracting content: {str(e)}")
return None
def extract_youtube_transcript(url):
"""Extract transcript from YouTube videos"""
try:
# Extract video ID from URL
video_id = url.split('v=')[1].split('&')[0]
# Get transcript
transcript = YouTubeTranscriptApi.get_transcript(video_id)
# Combine transcript text
full_text = ' '.join([entry['text'] for entry in transcript])
return full_text
except Exception as e:
st.error(f"Could not extract YouTube transcript: {str(e)}")
return None
def extract_web_article(url):
"""Extract text content from web articles"""
try:
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
}
response = requests.get(url, headers=headers)
response.raise_for_status()
soup = BeautifulSoup(response.text, 'html.parser')
# Remove unwanted tags
for tag in soup(['script', 'style', 'nav', 'footer', 'header']):
tag.decompose()
# Extract text from paragraphs
paragraphs = soup.find_all('p')
text_content = ' '.join([p.get_text().strip() for p in paragraphs])
return text_content
except Exception as e:
st.error(f"Could not extract web article content: {str(e)}")
return None
def upload_external_resource(course_id, session_id, title, content, content_type, source_url):
"""Upload extracted external resource content to the database"""
resource_data = {
"_id": ObjectId(),
"course_id": course_id,
"session_id": session_id,
"file_name": f"{title} ({content_type})",
"file_type": "external",
"text_content": content,
"material_type": content_type,
"source_url": source_url,
"uploaded_at": datetime.utcnow()
}
# Check if resource already exists
existing_resource = resources_collection.find_one({
"session_id": session_id,
"source_url": source_url
})
if existing_resource:
return existing_resource["_id"]
# Insert new resource
resources_collection.insert_one(resource_data)
resource_id = resource_data["_id"]
# Update course document
courses_collection.update_one(
{
"course_id": course_id,
"sessions.session_id": session_id
},
{
"$push": {"sessions.$.pre_class.resources": resource_id}
}
)
if content:
create_vector_store(content, resource_id)
return resource_id
def display_quiz_tab(student_id, course_id, session_id):
"""Display quizzes for students"""
st.header("Course Quizzes")
# Get available quizzes for this session
quizzes = quizzes_collection.find({
"course_id": course_id,
"session_id": session_id,
"status": "active"
})
quizzes = list(quizzes)
if not quizzes:
st.info("No quizzes available for this session.")
return
for quiz in quizzes:
with st.expander(f"π {quiz['title']}", expanded=True):
# Check if student has already taken this quiz
existing_score = get_student_quiz_score(quiz['_id'], student_id)
if existing_score is not None:
st.success(f"Quiz completed! Your score: {existing_score:.1f}%")
# Display correct answers after submission
st.subheader("Quiz Review")
for i, question in enumerate(quiz['questions']):
st.markdown(f"**Question {i+1}:** {question['question']}")
for opt in question['options']:
if opt.startswith(question['correct_option']):
st.markdown(f"β
{opt}")
else:
st.markdown(f"- {opt}")
else:
# Display quiz questions
st.write("Please select your answers:")
# Create a form for quiz submission
with st.form(f"quiz_form_{quiz['_id']}"):
student_answers = {}
for i, question in enumerate(quiz['questions']):
st.markdown(f"**Question {i+1}:** {question['question']}")
options = [opt for opt in question['options']]
student_answers[str(i)] = st.radio(
f"Select answer for question {i+1}:",
options=options,
key=f"q_{quiz['_id']}_{i}"
)
# Submit button
if st.form_submit_button("Submit Quiz"):
print(student_answers)
score = submit_quiz_answers(quiz['_id'], student_id, student_answers)
if score is not None:
st.success(f"Quiz submitted successfully! Your score: {score:.1f}%")
st.rerun() # Refresh to show results
else:
st.error("Error submitting quiz. Please try again.")
def display_session_content(student_id, course_id, session, username, user_type):
st.title(f"{session['title']}")
# Check if the date is a string or a datetime object
if isinstance(session['date'], str):
session_date = datetime.fromisoformat(session['date'])
else:
session_date = session['date']
course_name = courses_collection.find_one({"course_id": course_id})['title']
st.markdown(f"**Date:** {format_datetime(session_date)}")
st.markdown(f"**Course Name:** {course_name}")
if user_type == 'student':
tabs = st.tabs([
"Pre-class Work",
"In-class Work",
"Post-class Work",
"Quizzes",
"Subjective Tests",
"Group Work",
"End Terms"
])
if len(tabs) <= 7:
with tabs[0]:
display_preclass_content(session, student_id, course_id)
with tabs[1]:
display_in_class_content(session, user_type)
with tabs[2]:
display_post_class_content(session, student_id, course_id)
with tabs[3]:
display_quiz_tab(student_id, course_id, session['session_id'])
with tabs[4]:
display_subjective_test_tab(student_id, course_id, session['session_id']) # Added this line
with tabs[5]:
#display_group_work_tab(session, student_id)
st.info("End term content will be available soon.")
with tabs[6]:
st.subheader("End Terms")
st.info("End term content will be available soon.")
else: # faculty user
tabs = st.tabs([
"Pre-class Work",
"In-class Work",
"Post-class Work",
"Pre-class Analytics",
"In-class Analytics",
"Post-class Analytics",
"Rubrics",
"End Terms",
"Evaluate Subjective Tests" # New tab for evaluation
])
with tabs[0]:
upload_preclass_materials(session['session_id'], course_id)
with tabs[1]:
display_in_class_content(session, user_type)
with tabs[2]:
display_post_class_content(session, student_id, course_id)
with tabs[3]:
display_preclass_analytics2(session, course_id)
with tabs[4]:
display_inclass_analytics(session, course_id)
with tabs[5]:
display_postclass_analytics(session, course_id)
with tabs[6]:
display_rubrics_tab(session, course_id)
with tabs[7]:
st.subheader("End Terms")
st.info("End term content will be available soon.")
with tabs[8]: # New tab for evaluation
display_evaluation_to_faculty(session['session_id'], student_id, course_id)
def parse_model_response(response_text):
"""Enhanced parser for model responses with better error handling.
Args:
response_text (str): Raw response text from the model
Returns:
dict or list: Parsed response object
Raises:
ValueError: If parsing fails
"""
import json
import ast
import re
# Remove markdown formatting and whitespace
cleaned_text = re.sub(r'```[a-zA-Z]*\n', '', response_text)
cleaned_text = cleaned_text.replace('```', '').strip()
# Try multiple parsing methods
parsing_methods = [
# Method 1: Direct JSON parsing
lambda x: json.loads(x),
# Method 2: AST literal evaluation
lambda x: ast.literal_eval(x),
# Method 3: Extract and parse content between curly braces
lambda x: json.loads(re.search(r'\{.*\}', x, re.DOTALL).group()),
# Method 4: Extract and parse content between square brackets
lambda x: json.loads(re.search(r'\[.*\]', x, re.DOTALL).group()),
# Method 5: Try to fix common JSON formatting issues and parse
lambda x: json.loads(x.replace("'", '"').replace('\n', '\\n'))
]
last_error = None
for parse_method in parsing_methods:
try:
result = parse_method(cleaned_text)
if result: # Ensure we have actual content
return result
except Exception as e:
last_error = e
continue
raise ValueError(f"Could not parse the model's response: {last_error}")
def generate_questions(context, num_questions, session_title, session_description):
"""Generate subjective questions based on context or session details"""
try:
# Construct the prompt
prompt = f"""You are a professional educator creating {num_questions} subjective questions.
Topic: {session_title}
Description: {session_description}
{'Context: ' + context if context else ''}
Generate exactly {num_questions} questions in this specific format:
[
{{"question": "Write your first question here?"}},
{{"question": "Write your second question here?"}}
]
Requirements:
1. Questions must require detailed explanations
2. Focus on critical thinking and analysis
3. Ask for specific examples or case studies
4. Questions should test deep understanding
IMPORTANT: Return ONLY the JSON array. Do not include any additional text or explanations.
"""
# Generate response
response = model.generate_content(prompt)
questions = parse_model_response(response.text)
# Validate response
if not isinstance(questions, list):
raise ValueError("Generated content is not a list")
if len(questions) != num_questions:
raise ValueError(f"Generated {len(questions)} questions instead of {num_questions}")
# Validate each question
for q in questions:
if not isinstance(q, dict) or 'question' not in q:
raise ValueError("Invalid question format")
return questions
except Exception as e:
print(f"Error generating questions: {str(e)}")
return None
def generate_synoptic(questions, context, session_title, num_questions):
"""Generate synoptic answers for the questions with improved error handling and response validation.
Args:
questions (list): List of question dictionaries
context (str): Additional context for answer generation
session_title (str): Title of the session
num_questions (int): Expected number of questions
Returns:
list: List of synoptic answers or None if generation fails
"""
try:
# First, let's validate our input
if not questions or not isinstance(questions, list):
raise ValueError("Questions must be provided as a non-empty list")
# Format questions for better prompt clarity
formatted_questions = "\n".join(
f"{i+1}. {q['question']}"
for i, q in enumerate(questions)
)
# Construct a more structured prompt
prompt = f"""You are a subject matter expert creating detailed model answers for {num_questions} questions about {session_title}.
Here are the questions:
{formatted_questions}
{f'Additional context: {context}' if context else ''}
Please provide {num_questions} comprehensive answers following this JSON format:
{{
"answers": [
{{
"answer": "Your detailed answer for question 1...",
"key_points": ["Point 1", "Point 2", "Point 3"]
}},
{{
"answer": "Your detailed answer for question 2...",
"key_points": ["Point 1", "Point 2", "Point 3"]
}}
]
}}
Requirements for each answer:
1. Minimum 150 words
2. Include specific examples and evidence
3. Reference key concepts and terminology
4. Demonstrate critical analysis
5. Structure with clear introduction, body, and conclusion
IMPORTANT: Return ONLY the JSON object with the answers array. No additional text.
"""
# Generate response
response = model.generate_content(prompt)
# Parse and validate the response
parsed_response = parse_model_response(response.text)
# Additional validation of parsed response
if not isinstance(parsed_response, (dict, list)):
raise ValueError("Response must be a dictionary or list")
# Handle both possible valid response formats
if isinstance(parsed_response, dict):
answers = parsed_response.get('answers', [])
else: # If it's a list
answers = parsed_response
# Validate answer count
if len(answers) != num_questions:
raise ValueError(f"Expected {num_questions} answers, got {len(answers)}")
# Extract just the answer texts for consistency with existing code
final_answers = []
for ans in answers:
if isinstance(ans, dict):
answer_text = ans.get('answer', '')
key_points = ans.get('key_points', [])
formatted_answer = f"{answer_text}\n\nKey Points:\n" + "\n".join(f"β’ {point}" for point in key_points)
final_answers.append(formatted_answer)
else:
final_answers.append(str(ans))
# Final validation of the answers
for i, answer in enumerate(final_answers):
if not answer or len(answer.split()) < 50: # Basic length check
raise ValueError(f"Answer {i+1} is too short or empty")
# Save the synoptic to the synoptic_store collection
synoptic_data = {
"session_title": session_title,
"questions": questions,
"synoptic": final_answers,
"created_at": datetime.utcnow()
}
synoptic_store_collection.insert_one(synoptic_data)
return final_answers
except Exception as e:
# Log the error for debugging
print(f"Error in generate_synoptic: {str(e)}")
print(f"Response text: {response.text if 'response' in locals() else 'No response generated'}")
return None
def save_subjective_test(course_id, session_id, title, questions):
"""Save subjective test to database with proper ID handling"""
try:
# Ensure proper string format for IDs
course_id = str(course_id)
session_id = str(session_id)
# Format questions
formatted_questions = []
for q in questions:
formatted_question = {
"question": q["question"],
"expected_points": [],
"difficulty_level": "medium",
"suggested_time": "5 minutes"
}
formatted_questions.append(formatted_question)
test_data = {
"course_id": course_id,
"session_id": session_id,
"title": title,
"questions": formatted_questions,
"created_at": datetime.utcnow(),
"status": "active",
"submissions": []
}
result = subjective_tests_collection.insert_one(test_data)
return str(result.inserted_id)
except Exception as e:
print(f"Error saving test: {e}")
return None
def submit_subjective_test(test_id, student_id, answers):
"""Submit test answers with proper ID handling"""
try:
# Ensure IDs are strings
test_id = str(test_id)
student_id = str(student_id)
# Create submission document
submission = {
"student_id": student_id,
"answers": answers,
"submitted_at": datetime.utcnow(),
"status": "submitted"
}
# Update test document with new submission
result = subjective_tests_collection.update_one(
{"_id": ObjectId(test_id)},
{"$push": {"submissions": submission}}
)
return result.modified_count > 0
except Exception as e:
print(f"Error submitting test: {e}")
return False
def display_subjective_test_tab(student_id, course_id, session_id):
"""Display subjective tests and results for students"""
st.header("Subjective Tests")
try:
subjective_tests = list(subjective_tests_collection.find({
"course_id": course_id,
"session_id": session_id,
"status": "active"
}))
if not subjective_tests:
st.info("No subjective tests available for this session.")
return
# Create tabs for Tests and Results
test_tab, results_tab = st.tabs(["Available Tests", "Test Results"])
with test_tab:
for test in subjective_tests:
with st.expander(f"π {test['title']}", expanded=True):
# Check for existing submission
existing_submission = next(
(sub for sub in test.get('submissions', [])
if sub['student_id'] == str(student_id)),
None
)
if existing_submission:
st.success("Test completed! Your answers have been submitted.")
st.subheader("Your Answers")
for i, ans in enumerate(existing_submission['answers']):
st.markdown(f"**Question {i+1}:** {test['questions'][i]['question']}")
st.markdown(f"**Your Answer:** {ans}")
st.markdown("---")
else:
st.write("Please write your answers:")
with st.form(key=f"subjective_test_form_{test['_id']}"):
student_answers = []
for i, question in enumerate(test['questions']):
st.markdown(f"**Question {i+1}:** {question['question']}")
answer = st.text_area(
"Your answer:",
key=f"q_{test['_id']}_{i}",
height=200
)
student_answers.append(answer)
if st.form_submit_button("Submit Test"):
if all(answer.strip() for answer in student_answers):
success = submit_subjective_test(
test['_id'],
str(student_id),
student_answers
)
if success:
st.success("Test submitted successfully!")
st.rerun()
else:
st.error("Error submitting test. Please try again.")
else:
st.error("Please answer all questions before submitting.")
with results_tab:
# Display results for completed tests
completed_tests = [
test for test in subjective_tests
if any(sub['student_id'] == str(student_id) for sub in test.get('submissions', []))
]
if not completed_tests:
st.info("You haven't completed any tests yet.")
return
# Create a selectbox for choosing which test results to view
test_options = {
f"{test['title']} (Submitted: {next(sub['submitted_at'].strftime('%Y-%m-%d') for sub in test['submissions'] if sub['student_id'] == str(student_id))})"
: test['_id']
for test in completed_tests
}
selected_test = st.selectbox(
"Select a test to view results:",
options=list(test_options.keys())
)
if selected_test:
test_id = test_options[selected_test]
display_test_results(test_id, student_id)
except Exception as e:
st.error("An error occurred while loading the tests. Please try again later.")
print(f"Error in display_subjective_test_tab: {str(e)}")
def display_test_results(test_id, student_id):
"""
Display test results and analysis for a student
Args:
test_id: ObjectId or str of the test
student_id: str of the student ID
"""
try:
# Fetch analysis from evaluation collection
analysis = subjective_test_evaluation_collection.find_one({
"test_id": test_id,
"student_id": str(student_id)
})
if not analysis:
st.info("Analysis will be available soon. Please check back later.")
return
st.header("Test Analysis")
# Display overall evaluation summary if available
if "overall_summary" in analysis:
with st.expander("Overall Performance Summary", expanded=True):
st.markdown(analysis["overall_summary"])
# Display individual question evaluations
st.subheader("Question-wise Analysis")
for eval_item in analysis.get('evaluations', []):
with st.expander(f"Question {eval_item['question_number']}", expanded=True):
st.markdown("**Question:**")
st.markdown(eval_item['question'])
st.markdown("**Your Answer:**")
st.markdown(eval_item['answer'])
st.markdown("**Evaluation:**")
st.markdown(eval_item['evaluation'])
# Extract and display score if available
if "Score:" in eval_item['evaluation']:
score_line = next((line for line in eval_item['evaluation'].split('\n') if "Score:" in line), None)
if score_line:
score = score_line.split("Score:")[1].strip()
st.metric("Score", score)
# Display improvement points if available
if "Key Areas for Improvement" in eval_item['evaluation']:
st.markdown("**Areas for Improvement:**")
improvement_section = eval_item['evaluation'].split("Key Areas for Improvement")[1]
points = [point.strip('- ').strip() for point in improvement_section.split('\n') if point.strip().startswith('-')]
for point in points:
if point: # Only display non-empty points
st.markdown(f"β’ {point}")
# Display evaluation timestamp
if "evaluated_at" in analysis:
st.caption(f"Analysis generated on: {analysis['evaluated_at'].strftime('%Y-%m-%d %H:%M:%S UTC')}")
except Exception as e:
st.error("An error occurred while loading the analysis. Please try again later.")
print(f"Error in display_test_results: {str(e)}") |