Spaces:
Build error
Build error
File size: 10,563 Bytes
b91146d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
import streamlit as st
from datetime import datetime
from pymongo import MongoClient
import os
from openai import OpenAI
from dotenv import load_dotenv
from bson import ObjectId
load_dotenv()
# MongoDB setup
MONGO_URI = os.getenv('MONGO_URI')
client = MongoClient(MONGO_URI)
db = client["novascholar_db"]
subjective_tests_collection = db["subjective_tests"]
subjective_test_evaluation_collection = db["subjective_test_evaluation"]
resources_collection = db["resources"]
students_collection = db["students"]
def evaluate_subjective_answers(session_id, student_id, test_id):
"""
Generate evaluation and analysis for subjective test answers
"""
try:
# Fetch test and student submission
test = subjective_tests_collection.find_one({"_id": test_id})
if not test:
return None
# Find student's submission
submission = next(
(sub for sub in test.get('submissions', [])
if sub['student_id'] == str(student_id)),
None
)
if not submission:
return None
# Fetch pre-class materials
pre_class_materials = resources_collection.find({"session_id": session_id})
pre_class_content = ""
for material in pre_class_materials:
if 'text_content' in material:
pre_class_content += material['text_content'] + "\n"
# Default rubric (can be customized later)
default_rubric = """
1. Content Understanding (1-4):
- Demonstrates comprehensive understanding of core concepts
- Accurately applies relevant theories and principles
- Provides specific examples and evidence
2. Critical Analysis (1-4):
- Shows depth of analysis
- Makes meaningful connections
- Demonstrates original thinking
3. Organization & Clarity (1-4):
- Clear structure and flow
- Well-developed arguments
- Effective use of examples
"""
# Initialize OpenAI client
client = OpenAI(api_key=os.getenv('OPENAI_KEY'))
evaluations = []
for i, (question, answer) in enumerate(zip(test['questions'], submission['answers'])):
analysis_content = f"""
Question: {question['question']}
Student Answer: {answer}
"""
prompt_template = f"""As an educational assessor, evaluate this student's answer based on the provided rubric criteria and pre-class materials. Follow these assessment guidelines:
1. Evaluation Process:
- Use each rubric criterion (scored 1-4) for internal assessment
- Compare response with pre-class materials
- Check alignment with all rubric requirements
- Calculate final score: sum of criteria scores converted to 10-point scale
Pre-class Materials:
{pre_class_content[:1000]} # Truncate to avoid token limits
Rubric Criteria:
{default_rubric}
Question and Answer:
{analysis_content}
Provide your assessment in the following format:
**Score and Evidence**
- Score: [X]/10
- Evidence for deduction: [One-line reference to most significant gap or inaccuracy]
**Key Areas for Improvement**
- [Concise improvement point 1]
- [Concise improvement point 2]
- [Concise improvement point 3]
"""
# Generate evaluation using OpenAI
response = client.chat.completions.create(
model="gpt-4o-mini",
messages=[{"role": "user", "content": prompt_template}],
max_tokens=500,
temperature=0.4
)
evaluations.append({
"question_number": i + 1,
"question": question['question'],
"answer": answer,
"evaluation": response.choices[0].message.content
})
# Store evaluation in MongoDB
evaluation_doc = {
"test_id": test_id,
"student_id": student_id,
"session_id": session_id,
"evaluations": evaluations,
"evaluated_at": datetime.utcnow()
}
subjective_test_evaluation_collection.insert_one(evaluation_doc)
return evaluation_doc
except Exception as e:
print(f"Error in evaluate_subjective_answers: {str(e)}")
return None
def display_evaluation_to_faculty(session_id, student_id, course_id):
"""
Display interface for faculty to generate and view evaluations
"""
st.header("Evaluate Subjective Tests")
try:
# Fetch available tests
tests = list(subjective_tests_collection.find({
"session_id": str(session_id),
"status": "active"
}))
if not tests:
st.info("No subjective tests found for this session.")
return
# Select test
test_options = {
f"{test['title']} (Created: {test['created_at'].strftime('%Y-%m-%d %H:%M')})" if 'created_at' in test else test['title']: test['_id']
for test in tests
}
if test_options:
selected_test = st.selectbox(
"Select Test to Evaluate",
options=list(test_options.keys())
)
if selected_test:
test_id = test_options[selected_test]
test = subjective_tests_collection.find_one({"_id": test_id})
if test:
submissions = test.get('submissions', [])
if not submissions:
st.warning("No submissions found for this test.")
return
# Create a dropdown for student submissions
student_options = {
f"{students_collection.find_one({'_id': ObjectId(sub['student_id'])})['full_name']} (Submitted: {sub['submitted_at'].strftime('%Y-%m-%d %H:%M')})": sub['student_id']
for sub in submissions
}
selected_student = st.selectbox(
"Select Student Submission",
options=list(student_options.keys())
)
if selected_student:
student_id = student_options[selected_student]
submission = next(sub for sub in submissions if sub['student_id'] == student_id)
st.markdown(f"**Submission Date:** {submission.get('submitted_at', 'No submission date')}")
st.markdown("---")
# Display questions and answers
st.subheader("Submission Details")
for i, (question, answer) in enumerate(zip(test['questions'], submission['answers'])):
st.markdown(f"**Question {i+1}:** {question['question']}")
st.markdown(f"**Answer:** {answer}")
st.markdown("---")
# Check for existing evaluation
existing_eval = subjective_test_evaluation_collection.find_one({
"test_id": test_id,
"student_id": student_id,
"session_id": str(session_id)
})
if existing_eval:
st.subheader("Evaluation Results")
for eval_item in existing_eval['evaluations']:
st.markdown(f"### Evaluation for Question {eval_item['question_number']}")
st.markdown(eval_item['evaluation'])
st.markdown("---")
st.success("✓ Evaluation completed")
if st.button("Regenerate Evaluation", key=f"regenerate_{student_id}_{test_id}"):
with st.spinner("Regenerating evaluation..."):
evaluation = evaluate_subjective_answers(
str(session_id),
student_id,
test_id
)
if evaluation:
st.success("Evaluation regenerated successfully!")
st.rerun()
else:
st.error("Error regenerating evaluation.")
else:
st.subheader("Generate Evaluation")
if st.button("Generate Evaluation", key=f"evaluate_{student_id}_{test_id}"):
with st.spinner("Generating evaluation..."):
evaluation = evaluate_subjective_answers(
str(session_id),
student_id,
test_id
)
if evaluation:
st.success("Evaluation generated successfully!")
st.markdown("### Generated Evaluation")
for eval_item in evaluation['evaluations']:
st.markdown(f"#### Question {eval_item['question_number']}")
st.markdown(eval_item['evaluation'])
st.markdown("---")
st.rerun()
else:
st.error("Error generating evaluation.")
except Exception as e:
st.error(f"An error occurred while loading the evaluations: {str(e)}")
print(f"Error in display_evaluation_to_faculty: {str(e)}") |