File size: 10,563 Bytes
b91146d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
import streamlit as st
from datetime import datetime
from pymongo import MongoClient
import os
from openai import OpenAI
from dotenv import load_dotenv
from bson import ObjectId

load_dotenv()

# MongoDB setup
MONGO_URI = os.getenv('MONGO_URI')
client = MongoClient(MONGO_URI)
db = client["novascholar_db"]
subjective_tests_collection = db["subjective_tests"]
subjective_test_evaluation_collection = db["subjective_test_evaluation"]
resources_collection = db["resources"]
students_collection = db["students"]

def evaluate_subjective_answers(session_id, student_id, test_id):
    """

    Generate evaluation and analysis for subjective test answers

    """
    try:
        # Fetch test and student submission
        test = subjective_tests_collection.find_one({"_id": test_id})
        if not test:
            return None

        # Find student's submission
        submission = next(
            (sub for sub in test.get('submissions', []) 
             if sub['student_id'] == str(student_id)),
            None
        )
        if not submission:
            return None

        # Fetch pre-class materials
        pre_class_materials = resources_collection.find({"session_id": session_id})
        pre_class_content = ""
        for material in pre_class_materials:
            if 'text_content' in material:
                pre_class_content += material['text_content'] + "\n"

        # Default rubric (can be customized later)
        default_rubric = """

        1. Content Understanding (1-4):

           - Demonstrates comprehensive understanding of core concepts

           - Accurately applies relevant theories and principles

           - Provides specific examples and evidence

           

        2. Critical Analysis (1-4):

           - Shows depth of analysis

           - Makes meaningful connections

           - Demonstrates original thinking

           

        3. Organization & Clarity (1-4):

           - Clear structure and flow

           - Well-developed arguments

           - Effective use of examples

        """

        # Initialize OpenAI client
        client = OpenAI(api_key=os.getenv('OPENAI_KEY'))

        evaluations = []
        for i, (question, answer) in enumerate(zip(test['questions'], submission['answers'])):
            analysis_content = f"""

            Question: {question['question']}

            Student Answer: {answer}

            """

            prompt_template = f"""As an educational assessor, evaluate this student's answer based on the provided rubric criteria and pre-class materials. Follow these assessment guidelines:

            

            1. Evaluation Process:

            - Use each rubric criterion (scored 1-4) for internal assessment

            - Compare response with pre-class materials

            - Check alignment with all rubric requirements

            - Calculate final score: sum of criteria scores converted to 10-point scale



            Pre-class Materials:

            {pre_class_content[:1000]}  # Truncate to avoid token limits



            Rubric Criteria:

            {default_rubric}



            Question and Answer:

            {analysis_content}



            Provide your assessment in the following format:



            **Score and Evidence**

            - Score: [X]/10

            - Evidence for deduction: [One-line reference to most significant gap or inaccuracy]



            **Key Areas for Improvement**

            - [Concise improvement point 1]

            - [Concise improvement point 2]

            - [Concise improvement point 3]

            """

            # Generate evaluation using OpenAI
            response = client.chat.completions.create(
                model="gpt-4o-mini",
                messages=[{"role": "user", "content": prompt_template}],
                max_tokens=500,
                temperature=0.4
            )

            evaluations.append({
                "question_number": i + 1,
                "question": question['question'],
                "answer": answer,
                "evaluation": response.choices[0].message.content
            })

        # Store evaluation in MongoDB
        evaluation_doc = {
            "test_id": test_id,
            "student_id": student_id,
            "session_id": session_id,
            "evaluations": evaluations,
            "evaluated_at": datetime.utcnow()
        }
        
        subjective_test_evaluation_collection.insert_one(evaluation_doc)
        return evaluation_doc

    except Exception as e:
        print(f"Error in evaluate_subjective_answers: {str(e)}")
        return None

def display_evaluation_to_faculty(session_id, student_id, course_id):
    """

    Display interface for faculty to generate and view evaluations

    """
    st.header("Evaluate Subjective Tests")

    try:
        # Fetch available tests
        tests = list(subjective_tests_collection.find({
            "session_id": str(session_id),
            "status": "active"
        }))

        if not tests:
            st.info("No subjective tests found for this session.")
            return

        # Select test
        test_options = {
            f"{test['title']} (Created: {test['created_at'].strftime('%Y-%m-%d %H:%M')})" if 'created_at' in test else test['title']: test['_id'] 
            for test in tests
        }
        
        if test_options:
            selected_test = st.selectbox(
                "Select Test to Evaluate",
                options=list(test_options.keys())
            )

            if selected_test:
                test_id = test_options[selected_test]
                test = subjective_tests_collection.find_one({"_id": test_id})

                if test:
                    submissions = test.get('submissions', [])
                    if not submissions:
                        st.warning("No submissions found for this test.")
                        return

                    # Create a dropdown for student submissions
                    student_options = {
                        f"{students_collection.find_one({'_id': ObjectId(sub['student_id'])})['full_name']} (Submitted: {sub['submitted_at'].strftime('%Y-%m-%d %H:%M')})": sub['student_id']
                        for sub in submissions
                    }

                    selected_student = st.selectbox(
                        "Select Student Submission",
                        options=list(student_options.keys())
                    )

                    if selected_student:
                        student_id = student_options[selected_student]
                        submission = next(sub for sub in submissions if sub['student_id'] == student_id)

                        st.markdown(f"**Submission Date:** {submission.get('submitted_at', 'No submission date')}")
                        st.markdown("---")

                        # Display questions and answers
                        st.subheader("Submission Details")
                        for i, (question, answer) in enumerate(zip(test['questions'], submission['answers'])):
                            st.markdown(f"**Question {i+1}:** {question['question']}")
                            st.markdown(f"**Answer:** {answer}")
                            st.markdown("---")

                        # Check for existing evaluation
                        existing_eval = subjective_test_evaluation_collection.find_one({
                            "test_id": test_id,
                            "student_id": student_id,
                            "session_id": str(session_id)
                        })

                        if existing_eval:
                            st.subheader("Evaluation Results")
                            for eval_item in existing_eval['evaluations']:
                                st.markdown(f"### Evaluation for Question {eval_item['question_number']}")
                                st.markdown(eval_item['evaluation'])
                                st.markdown("---")
                            
                            st.success("✓ Evaluation completed")
                            if st.button("Regenerate Evaluation", key=f"regenerate_{student_id}_{test_id}"):
                                with st.spinner("Regenerating evaluation..."):
                                    evaluation = evaluate_subjective_answers(
                                        str(session_id),
                                        student_id,
                                        test_id
                                    )
                                    if evaluation:
                                        st.success("Evaluation regenerated successfully!")
                                        st.rerun()
                                    else:
                                        st.error("Error regenerating evaluation.")
                        else:
                            st.subheader("Generate Evaluation")
                            if st.button("Generate Evaluation", key=f"evaluate_{student_id}_{test_id}"):
                                with st.spinner("Generating evaluation..."):
                                    evaluation = evaluate_subjective_answers(
                                        str(session_id),
                                        student_id,
                                        test_id
                                    )
                                    if evaluation:
                                        st.success("Evaluation generated successfully!")
                                        st.markdown("### Generated Evaluation")
                                        for eval_item in evaluation['evaluations']:
                                            st.markdown(f"#### Question {eval_item['question_number']}")
                                            st.markdown(eval_item['evaluation'])
                                            st.markdown("---")
                                        st.rerun()
                                    else:
                                        st.error("Error generating evaluation.")

    except Exception as e:
        st.error(f"An error occurred while loading the evaluations: {str(e)}")
        print(f"Error in display_evaluation_to_faculty: {str(e)}")