NovaScholar / pre_class_analytics4.py
omkar-surve126's picture
Upload 38 files
b91146d verified
import pandas as pd
import numpy as np
from datetime import datetime
from typing import List, Dict, Any, Tuple
import spacy
from collections import Counter, defaultdict
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
from textblob import TextBlob
import networkx as nx
from scipy import stats
import logging
import json
from dataclasses import dataclass
from enum import Enum
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class TopicDifficulty(Enum):
EASY = "easy"
MODERATE = "moderate"
DIFFICULT = "difficult"
VERY_DIFFICULT = "very_difficult"
@dataclass
class QuestionMetrics:
complexity_score: float
follow_up_count: int
clarification_count: int
time_spent: float
sentiment_score: float
@dataclass
class TopicInsights:
difficulty_level: TopicDifficulty
common_confusion_points: List[str]
question_patterns: List[str]
time_distribution: Dict[str, float]
engagement_metrics: Dict[str, float]
recommended_focus_areas: List[str]
def to_dict(self):
return {
"difficulty_level": self.difficulty_level.value, # Convert enum to its value
"common_confusion_points": self.common_confusion_points,
"question_patterns": self.question_patterns,
"time_distribution": {str(k): v for k, v in self.time_distribution.items()},
"engagement_metrics": self.engagement_metrics,
"recommended_focus_areas": self.recommended_focus_areas,
}
class PreClassAnalytics:
def __init__(self, nlp_model: str = "en_core_web_lg"):
"""Initialize the analytics system with necessary components."""
self.nlp = spacy.load(nlp_model)
self.question_indicators = {
"what", "why", "how", "when", "where", "which", "who",
"whose", "whom", "can", "could", "would", "will", "explain"
}
self.confusion_indicators = {
"confused", "don't understand", "unclear", "not clear",
"stuck", "difficult", "hard", "help", "explain again"
}
self.follow_up_indicators = {
"also", "another", "additionally", "furthermore", "moreover",
"besides", "related", "similarly", "again"
}
def preprocess_chat_history(self, chat_history: List[Dict]) -> pd.DataFrame:
"""Convert chat history to DataFrame with enhanced features."""
messages = []
for chat in chat_history:
user_id = chat['user_id']['$oid']
for msg in chat['messages']:
try:
# Ensure the timestamp is in the correct format
if isinstance(msg['timestamp'], dict) and '$date' in msg['timestamp']:
timestamp = pd.to_datetime(msg['timestamp']['$date'])
elif isinstance(msg['timestamp'], str):
timestamp = pd.to_datetime(msg['timestamp'])
else:
raise ValueError("Invalid timestamp format")
except Exception as e:
print(f"Error parsing timestamp: {msg['timestamp']}, error: {e}")
timestamp = pd.NaT # Use NaT (Not a Time) for invalid timestamps
messages.append({
'user_id': user_id,
'timestamp': timestamp,
'prompt': msg['prompt'],
'response': msg['response'],
'is_question': any(q in msg['prompt'].lower() for q in self.question_indicators),
'shows_confusion': any(c in msg['prompt'].lower() for c in self.confusion_indicators),
'is_followup': any(f in msg['prompt'].lower() for f in self.follow_up_indicators)
})
df = pd.DataFrame(messages)
df['sentiment'] = df['prompt'].apply(lambda x: TextBlob(x).sentiment.polarity)
return df
def extract_topic_hierarchies(self, df: pd.DataFrame) -> Dict[str, List[str]]:
"""Extract hierarchical topic relationships from conversations."""
topic_hierarchy = defaultdict(list)
for _, row in df.iterrows():
doc = self.nlp(row['prompt'])
# Extract main topics and subtopics using noun chunks and dependencies
main_topics = []
subtopics = []
for chunk in doc.noun_chunks:
if chunk.root.dep_ in ('nsubj', 'dobj'):
main_topics.append(chunk.text.lower())
else:
subtopics.append(chunk.text.lower())
# Build hierarchy
for main_topic in main_topics:
topic_hierarchy[main_topic].extend(subtopics)
# Clean and deduplicate
return {k: list(set(v)) for k, v in topic_hierarchy.items()}
def analyze_topic_difficulty(self, df: pd.DataFrame, topic: str) -> TopicDifficulty:
"""Determine topic difficulty based on various metrics."""
topic_msgs = df[df['prompt'].str.contains(topic, case=False)]
# Calculate difficulty indicators
confusion_rate = topic_msgs['shows_confusion'].mean()
question_rate = topic_msgs['is_question'].mean()
follow_up_rate = topic_msgs['is_followup'].mean()
avg_sentiment = topic_msgs['sentiment'].mean()
# Calculate composite difficulty score
difficulty_score = (
confusion_rate * 0.4 +
question_rate * 0.3 +
follow_up_rate * 0.2 +
(1 - (avg_sentiment + 1) / 2) * 0.1
)
# Map score to difficulty level
if difficulty_score < 0.3:
return TopicDifficulty.EASY
elif difficulty_score < 0.5:
return TopicDifficulty.MODERATE
elif difficulty_score < 0.7:
return TopicDifficulty.DIFFICULT
else:
return TopicDifficulty.VERY_DIFFICULT
def identify_confusion_patterns(self, df: pd.DataFrame, topic: str) -> List[str]:
"""Identify common patterns in student confusion."""
confused_msgs = df[
(df['prompt'].str.contains(topic, case=False)) &
(df['shows_confusion'])
]['prompt']
patterns = []
for msg in confused_msgs:
doc = self.nlp(msg)
# Extract key phrases around confusion indicators
for sent in doc.sents:
for token in sent:
if token.text.lower() in self.confusion_indicators:
# Get context window around confusion indicator
context = sent.text
patterns.append(context)
# Group similar patterns
if patterns:
vectorizer = TfidfVectorizer(ngram_range=(1, 3))
tfidf_matrix = vectorizer.fit_transform(patterns)
similarity_matrix = cosine_similarity(tfidf_matrix)
# Cluster similar patterns
G = nx.Graph()
for i in range(len(patterns)):
for j in range(i + 1, len(patterns)):
if similarity_matrix[i][j] > 0.5: # Similarity threshold
G.add_edge(i, j)
# Extract representative patterns from each cluster
clusters = list(nx.connected_components(G))
return [patterns[min(cluster)] for cluster in clusters]
return []
def analyze_question_patterns(self, df: pd.DataFrame, topic: str) -> List[str]:
"""Analyze patterns in student questions about the topic."""
topic_questions = df[
(df['prompt'].str.contains(topic, case=False)) &
(df['is_question'])
]['prompt']
question_types = defaultdict(list)
for question in topic_questions:
doc = self.nlp(question)
# Categorize questions
if any(token.text.lower() in {"what", "define", "explain"} for token in doc):
question_types["conceptual"].append(question)
elif any(token.text.lower() in {"how", "steps", "process"} for token in doc):
question_types["procedural"].append(question)
elif any(token.text.lower() in {"why", "reason", "because"} for token in doc):
question_types["reasoning"].append(question)
else:
question_types["other"].append(question)
# Extract patterns from each category
patterns = []
for category, questions in question_types.items():
if questions:
vectorizer = TfidfVectorizer(ngram_range=(1, 3))
tfidf_matrix = vectorizer.fit_transform(questions)
# Get most representative questions
feature_array = np.mean(tfidf_matrix.toarray(), axis=0)
tfidf_sorting = np.argsort(feature_array)[::-1]
features = vectorizer.get_feature_names_out()
patterns.append(f"{category}: {' '.join(features[tfidf_sorting[:3]])}")
return patterns
def analyze_time_distribution(self, df: pd.DataFrame, topic: str) -> Dict[str, float]:
"""Analyze time spent on different aspects of the topic."""
topic_msgs = df[df['prompt'].str.contains(topic, case=False)].copy()
if len(topic_msgs) < 2:
return {}
topic_msgs['time_diff'] = topic_msgs['timestamp'].diff()
# Calculate time distribution
distribution = {
'total_time': topic_msgs['time_diff'].sum().total_seconds() / 60,
'avg_time_per_message': topic_msgs['time_diff'].mean().total_seconds() / 60,
'max_time_gap': topic_msgs['time_diff'].max().total_seconds() / 60,
'time_spent_on_questions': topic_msgs[topic_msgs['is_question']]['time_diff'].sum().total_seconds() / 60,
'time_spent_on_confusion': topic_msgs[topic_msgs['shows_confusion']]['time_diff'].sum().total_seconds() / 60
}
return distribution
def calculate_engagement_metrics(self, df: pd.DataFrame, topic: str) -> Dict[str, float]:
"""Calculate student engagement metrics for the topic."""
topic_msgs = df[df['prompt'].str.contains(topic, case=False)]
metrics = {
'message_count': len(topic_msgs),
'question_ratio': topic_msgs['is_question'].mean(),
'confusion_ratio': topic_msgs['shows_confusion'].mean(),
'follow_up_ratio': topic_msgs['is_followup'].mean(),
'avg_sentiment': topic_msgs['sentiment'].mean(),
'engagement_score': 0.0 # Will be calculated below
}
# Calculate engagement score
metrics['engagement_score'] = (
metrics['message_count'] * 0.3 +
metrics['question_ratio'] * 0.25 +
metrics['follow_up_ratio'] * 0.25 +
(metrics['avg_sentiment'] + 1) / 2 * 0.2 # Normalize sentiment to 0-1
)
return metrics
def generate_topic_insights(self, df: pd.DataFrame, topic: str) -> TopicInsights:
"""Generate comprehensive insights for a topic."""
difficulty = self.analyze_topic_difficulty(df, topic)
confusion_points = self.identify_confusion_patterns(df, topic)
question_patterns = self.analyze_question_patterns(df, topic)
time_distribution = self.analyze_time_distribution(df, topic)
engagement_metrics = self.calculate_engagement_metrics(df, topic)
# Generate recommended focus areas based on insights
focus_areas = []
if difficulty in (TopicDifficulty.DIFFICULT, TopicDifficulty.VERY_DIFFICULT):
focus_areas.append("Fundamental concept reinforcement needed")
if confusion_points:
focus_areas.append(f"Address common confusion around: {', '.join(confusion_points[:3])}")
if engagement_metrics['confusion_ratio'] > 0.3:
focus_areas.append("Consider alternative teaching approaches")
if time_distribution.get('time_spent_on_questions', 0) > time_distribution.get('total_time', 0) * 0.5:
focus_areas.append("More practical examples or demonstrations needed")
return TopicInsights(
difficulty_level=difficulty,
common_confusion_points=confusion_points,
question_patterns=question_patterns,
time_distribution=time_distribution,
engagement_metrics=engagement_metrics,
recommended_focus_areas=focus_areas
)
def analyze_student_progress(self, df: pd.DataFrame) -> Dict[str, Any]:
"""Analyze individual student progress and learning patterns."""
student_progress = {}
for student_id in df['user_id'].unique():
student_msgs = df[df['user_id'] == student_id]
# Calculate student-specific metrics
progress = {
'total_messages': len(student_msgs),
'questions_asked': student_msgs['is_question'].sum(),
'confusion_instances': student_msgs['shows_confusion'].sum(),
'avg_sentiment': student_msgs['sentiment'].mean(),
'topic_engagement': {},
'learning_pattern': self._identify_learning_pattern(student_msgs)
}
# Analyze topic-specific engagement
topics = self.extract_topic_hierarchies(student_msgs)
for topic in topics:
topic_msgs = student_msgs[student_msgs['prompt'].str.contains(topic, case=False)]
progress['topic_engagement'][topic] = {
'message_count': len(topic_msgs),
'confusion_rate': topic_msgs['shows_confusion'].mean(),
'sentiment_trend': stats.linregress(
range(len(topic_msgs)),
topic_msgs['sentiment']
).slope
}
student_progress[student_id] = progress
return student_progress
def _identify_learning_pattern(self, student_msgs: pd.DataFrame) -> str:
"""Identify student's learning pattern based on their interaction style."""
# Calculate key metrics
question_ratio = student_msgs['is_question'].mean()
confusion_ratio = student_msgs['shows_confusion'].mean()
follow_up_ratio = student_msgs['is_followup'].mean()
sentiment_trend = stats.linregress(
range(len(student_msgs)),
student_msgs['sentiment']
).slope
# Identify pattern
if question_ratio > 0.6:
return "Inquisitive Learner"
elif confusion_ratio > 0.4:
return "Needs Additional Support"
elif follow_up_ratio > 0.5:
return "Deep Dive Learner"
elif sentiment_trend > 0:
return "Progressive Learner"
else:
return "Steady Learner"
def generate_comprehensive_report(self, chat_history: List[Dict]) -> Dict[str, Any]:
"""Generate a comprehensive analytics report."""
# Preprocess chat history
df = self.preprocess_chat_history(chat_history)
# Extract topics
topics = self.extract_topic_hierarchies(df)
report = {
'topics': {},
'student_progress': self.analyze_student_progress(df),
'overall_metrics': {
'total_conversations': len(df),
'unique_students': df['user_id'].nunique(),
'avg_sentiment': df['sentiment'].mean(),
'most_discussed_topics': Counter(
topic for topics_list in topics.values()
for topic in topics_list
).most_common(5)
}
}
# Generate topic-specific insights
for main_topic, subtopics in topics.items():
subtopic_insights = {}
for subtopic in subtopics:
subtopic_insights[subtopic] = {
'insights': self.generate_topic_insights(df, subtopic),
'related_topics': [t for t in subtopics if t != subtopic],
'student_engagement': {
student_id: self.calculate_engagement_metrics(
df[df['user_id'] == student_id],
subtopic
)
for student_id in df['user_id'].unique()
}
}
report['topics'][main_topic] = {
'insights': self.generate_topic_insights(df, main_topic),
'subtopics': subtopic_insights,
'topic_relationships': {
'hierarchy_depth': len(subtopics),
'connection_strength': self._calculate_topic_connections(df, main_topic, subtopics),
'progression_path': self._identify_topic_progression(df, main_topic, subtopics)
}
}
# Add temporal analysis
report['temporal_analysis'] = {
'daily_engagement': df.groupby(df['timestamp'].dt.date).agg({
'user_id': 'count',
'is_question': 'sum',
'shows_confusion': 'sum',
'sentiment': 'mean'
}).to_dict(),
'peak_activity_hours': df.groupby(df['timestamp'].dt.hour)['user_id'].count().nlargest(3).to_dict(),
'learning_trends': self._analyze_learning_trends(df)
}
# Add recommendations
report['recommendations'] = self._generate_recommendations(report)
return report
def _calculate_topic_connections(self, df: pd.DataFrame, main_topic: str, subtopics: List[str]) -> Dict[str, float]:
"""Calculate connection strength between topics based on co-occurrence."""
connections = {}
main_topic_msgs = df[df['prompt'].str.contains(main_topic, case=False)]
for subtopic in subtopics:
cooccurrence = df[
df['prompt'].str.contains(main_topic, case=False) &
df['prompt'].str.contains(subtopic, case=False)
].shape[0]
connection_strength = cooccurrence / len(main_topic_msgs) if len(main_topic_msgs) > 0 else 0
connections[subtopic] = connection_strength
return connections
def _identify_topic_progression(self, df: pd.DataFrame, main_topic: str, subtopics: List[str]) -> List[str]:
"""Identify optimal topic progression path based on student interactions."""
topic_difficulties = {}
for subtopic in subtopics:
difficulty = self.analyze_topic_difficulty(df, subtopic)
topic_difficulties[subtopic] = difficulty.value
# Sort subtopics by difficulty
return sorted(subtopics, key=lambda x: topic_difficulties[x])
def _analyze_learning_trends(self, df: pd.DataFrame) -> Dict[str, Any]:
"""Analyze overall learning trends across the dataset."""
return {
'sentiment_trend': stats.linregress(
range(len(df)),
df['sentiment']
)._asdict(),
'confusion_trend': stats.linregress(
range(len(df)),
df['shows_confusion']
)._asdict(),
'engagement_progression': self._calculate_engagement_progression(df)
}
def _calculate_engagement_progression(self, df: pd.DataFrame) -> Dict[str, float]:
"""Calculate how student engagement changes over time."""
df['week'] = df['timestamp'].dt.isocalendar().week
weekly_engagement = df.groupby('week').agg({
'is_question': 'mean',
'shows_confusion': 'mean',
'is_followup': 'mean',
'sentiment': 'mean'
})
return {
'question_trend': stats.linregress(
range(len(weekly_engagement)),
weekly_engagement['is_question']
).slope,
'confusion_trend': stats.linregress(
range(len(weekly_engagement)),
weekly_engagement['shows_confusion']
).slope,
'follow_up_trend': stats.linregress(
range(len(weekly_engagement)),
weekly_engagement['is_followup']
).slope,
'sentiment_trend': stats.linregress(
range(len(weekly_engagement)),
weekly_engagement['sentiment']
).slope
}
def _generate_recommendations(self, report: Dict[str, Any]) -> List[str]:
"""Generate actionable recommendations based on the analysis."""
recommendations = []
# Analyze difficulty distribution
difficult_topics = [
topic for topic, data in report['topics'].items()
if data['insights'].difficulty_level in
(TopicDifficulty.DIFFICULT, TopicDifficulty.VERY_DIFFICULT)
]
if difficult_topics:
recommendations.append(
f"Consider providing additional resources for challenging topics: {', '.join(difficult_topics)}"
)
# Analyze student engagement
avg_engagement = np.mean([
progress['questions_asked'] / progress['total_messages']
for progress in report['student_progress'].values()
])
if avg_engagement < 0.3:
recommendations.append(
"Implement more interactive elements to increase student engagement"
)
# Analyze temporal patterns
peak_hours = list(report['temporal_analysis']['peak_activity_hours'].keys())
recommendations.append(
f"Consider scheduling additional support during peak activity hours: {peak_hours}"
)
# Analyze learning trends
# sentiment_trend = report['temporal_analysis']['learning_trends']['sentiment_trend']
# if sentiment_trend < 0:
# recommendations.append(
# "Review teaching approach to address declining student satisfaction"
# )
# Analyze learning trends
# Analyze learning trends
sentiment_trend = report.get('temporal_analysis', {}).get('learning_trends', {}).get('sentiment_trend', None)
if isinstance(sentiment_trend, (int, float)):
if sentiment_trend < 0:
recommendations.append(
"Review teaching approach to address declining student satisfaction"
)
elif isinstance(sentiment_trend, dict):
# Handle the case where sentiment_trend is a dictionary
print(f"Unexpected dict format for sentiment_trend: {sentiment_trend}")
else:
print(f"Unexpected type for sentiment_trend: {type(sentiment_trend)}")
return recommendations
class CustomJSONEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj, TopicDifficulty):
return obj.value
if isinstance(obj, TopicInsights):
return obj.to_dict()
if isinstance(obj, np.integer):
return int(obj)
if isinstance(obj, np.floating):
return float(obj)
if isinstance(obj, np.ndarray):
return obj.tolist()
if isinstance(obj, datetime):
return obj.isoformat()
return super().default(obj)
def convert_insights_to_dict(report):
for main_topic, data in report['topics'].items():
if isinstance(data['insights'], TopicInsights):
data['insights'] = data['insights'].to_dict()
for subtopic, subdata in data['subtopics'].items():
if isinstance(subdata['insights'], TopicInsights):
subdata['insights'] = subdata['insights'].to_dict()
if __name__ == "__main__":
# Load chat history data
chat_history = None
with open('sample_files/chat_history_corpus.json', 'r', encoding="utf-8") as file:
chat_history = json.load(file)
# Initialize analytics system
analytics = PreClassAnalytics()
# Generate comprehensive report
report = analytics.generate_comprehensive_report(chat_history)
# Convert insights to dictionary
# convert_insights_to_dict(report)
print(json.dumps(report, indent=4, cls=CustomJSONEncoder))
# print(report)