Spaces:
Build error
Build error
import streamlit as st | |
from pymongo import MongoClient | |
from openai import OpenAI | |
from bson import ObjectId | |
import json | |
from dotenv import load_dotenv | |
import os | |
load_dotenv() | |
MONGO_URI = os.getenv('MONGO_URI') | |
OPENAI_API_KEY = os.getenv('OPENAI_KEY') | |
client = MongoClient(MONGO_URI) | |
db = client['novascholar_db'] | |
# db.create_collection("rubrics") | |
rubrics_collection = db['rubrics'] | |
resources_collection = db['resources'] | |
courses_collection = db['courses'] | |
def generate_rubrics(api_key, session_title, outcome_description, taxonomy, pre_class_material): | |
prompt = f""" | |
You are an expert educational AI assistant specializing in instructional design. Generate a detailed rubric for the session titled "{session_title}". The rubric should be aligned with Bloom's Taxonomy level "{taxonomy}" and use numerical scoring levels (4,3,2,1) instead of descriptive levels. Use the following context: | |
Session Outcome Description: | |
{outcome_description} | |
Pre-class Material: | |
{pre_class_material} | |
Please generate the rubric in JSON format with these specifications: | |
1. Use numerical levels (4=Highest, 1=Lowest) instead of descriptive levels | |
2. Include 4-5 relevant criteria based on the session outcome | |
3. Each criterion should have clear descriptors for each numerical level | |
4. Focus on objectively measurable aspects for evaluation | |
5. Structure should be suitable for evaluating assignments and test answers | |
***IMPORTANT: DO NOT INCLUDE THE WORD JSON IN THE OUTPUT STRING, DO NOT INCLUDE BACKTICKS (```) IN THE OUTPUT, AND DO NOT INCLUDE ANY OTHER TEXT, OTHER THAN THE ACTUAL JSON RESPONSE. START THE RESPONSE STRING WITH AN OPEN CURLY BRACE {{ AND END WITH A CLOSING CURLY BRACE }}.*** | |
""" | |
messages = [ | |
{ | |
"role": "system", | |
"content": "You are an expert educational AI assistant specializing in instructional design.", | |
}, | |
{ | |
"role": "user", | |
"content": prompt | |
}, | |
] | |
try: | |
client = OpenAI(api_key=api_key) | |
response = client.chat.completions.create( | |
model="gpt-4-0125-preview", | |
messages=messages | |
) | |
return response.choices[0].message.content | |
except Exception as e: | |
st.error(f"Failed to generate rubrics: {e}") | |
return None | |
def display_rubrics_tab(session, course_id): | |
st.subheader("Generated Rubrics") | |
# Fetch session details from the courses collection | |
course_data = courses_collection.find_one( | |
{"course_id": course_id, "sessions.session_id": session['session_id']}, | |
{"sessions.$": 1} | |
) | |
if course_data and 'sessions' in course_data and len(course_data['sessions']) > 0: | |
session_data = course_data['sessions'][0] | |
# Extract session learning outcomes | |
if 'session_learning_outcomes' in session_data and len(session_data['session_learning_outcomes']) > 0: | |
outcome = session_data['session_learning_outcomes'][0] | |
outcome_description = outcome.get('outcome_description', '') | |
taxonomy_level = outcome.get('bloom_taxonomy_level', '') | |
# Display fetched information | |
st.markdown("### Session Information") | |
st.markdown(f"**Session Title:** {session['title']}") | |
st.markdown(f"**Learning Outcome:** {outcome_description}") | |
st.markdown(f"**Taxonomy Level:** {taxonomy_level}") | |
# Fetch pre-class material | |
pre_class_material_docs = resources_collection.find({"session_id": session['session_id']}) | |
pre_class_material = "\n".join([f"{doc.get('title', 'No Title')}: {doc.get('url', 'No URL')}" for doc in pre_class_material_docs]) | |
if st.button("Generate Rubric"): | |
rubric = generate_rubrics( | |
OPENAI_API_KEY, | |
session['title'], | |
outcome_description, | |
taxonomy_level, | |
pre_class_material | |
) | |
if rubric: | |
st.json(rubric) | |
if st.button("Save Rubric"): | |
rubric_data = { | |
"course_id": course_id, | |
"session_id": session['session_id'], | |
"rubric": json.loads(rubric) | |
} | |
rubrics_collection.insert_one(rubric_data) | |
st.success("Rubric saved successfully!") | |
else: | |
st.error("No learning outcomes found for this session") | |
else: | |
st.error("Session data not found") |