Spaces:
Build error
Build error
Harshal Vhatkar
commited on
Commit
·
08e10fc
1
Parent(s):
7ecae14
add resource gen in course generation
Browse files- .gitignore +2 -1
- app.py +371 -56
- create_course2.py +331 -0
- pre_class_analytics4.py +526 -0
- session_page.py +155 -118
.gitignore
CHANGED
@@ -18,4 +18,5 @@ course_creation.py
|
|
18 |
topics.json
|
19 |
new_analytics.json
|
20 |
new_analytics2.json
|
21 |
-
pre_class_analytics.py
|
|
|
|
18 |
topics.json
|
19 |
new_analytics.json
|
20 |
new_analytics2.json
|
21 |
+
pre_class_analytics.py
|
22 |
+
sample_files/
|
app.py
CHANGED
@@ -15,7 +15,7 @@ from werkzeug.security import generate_password_hash, check_password_hash
|
|
15 |
import os
|
16 |
from openai import OpenAI
|
17 |
from dotenv import load_dotenv
|
18 |
-
from
|
19 |
import json
|
20 |
from bson import ObjectId
|
21 |
client = OpenAI(api_key=os.getenv("OPENAI_KEY"))
|
@@ -653,14 +653,206 @@ def register_page():
|
|
653 |
st.success(f"Analyst registered successfully! Your username is: {username}")
|
654 |
|
655 |
# Create Course feature
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
656 |
def create_course_form(faculty_name, faculty_id):
|
657 |
-
"""Display enhanced form to create a new course with AI-generated content"""
|
|
|
658 |
st.title("Create New Course")
|
659 |
|
660 |
if 'course_plan' not in st.session_state:
|
661 |
st.session_state.course_plan = None
|
662 |
if 'edit_mode' not in st.session_state:
|
663 |
st.session_state.edit_mode = False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
664 |
|
665 |
# Initial Course Creation Form
|
666 |
if not st.session_state.course_plan:
|
@@ -669,6 +861,7 @@ def create_course_form(faculty_name, faculty_id):
|
|
669 |
with col1:
|
670 |
course_name = st.text_input("Course Name", placeholder="e.g., Introduction to Computer Science")
|
671 |
faculty_info = st.text_input("Faculty", value=faculty_name, disabled=True)
|
|
|
672 |
with col2:
|
673 |
duration_weeks = st.number_input("Duration (weeks)", min_value=1, max_value=16, value=12)
|
674 |
start_date = st.date_input("Start Date")
|
@@ -676,13 +869,51 @@ def create_course_form(faculty_name, faculty_id):
|
|
676 |
generate_button = st.form_submit_button("Generate Course Structure", use_container_width=True)
|
677 |
|
678 |
if generate_button and course_name:
|
679 |
-
with st.spinner("Generating course structure..."):
|
680 |
try:
|
681 |
-
|
682 |
-
|
683 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
684 |
st.session_state.start_date = start_date
|
685 |
st.session_state.duration_weeks = duration_weeks
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
686 |
st.rerun()
|
687 |
except Exception as e:
|
688 |
st.error(f"Error generating course structure: {e}")
|
@@ -693,6 +924,14 @@ def create_course_form(faculty_name, faculty_id):
|
|
693 |
if not st.session_state.edit_mode:
|
694 |
st.subheader(st.session_state.course_plan['course_title'])
|
695 |
st.write(st.session_state.course_plan['course_description'])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
696 |
edit_button = st.button("Edit Course Details", use_container_width=True)
|
697 |
if edit_button:
|
698 |
st.session_state.edit_mode = True
|
@@ -722,28 +961,45 @@ def create_course_form(faculty_name, faculty_id):
|
|
722 |
with st.expander(f"📚 Module {module_idx + 1}: {module['module_title']}", expanded=True):
|
723 |
# Edit module title
|
724 |
new_module_title = st.text_input(
|
725 |
-
f"Module
|
726 |
value=module['module_title'],
|
727 |
key=f"module_{module_idx}"
|
728 |
)
|
729 |
module['module_title'] = new_module_title
|
730 |
|
731 |
for sub_idx, sub_module in enumerate(module['sub_modules']):
|
732 |
-
st.markdown(
|
733 |
-
|
734 |
-
|
|
|
|
|
|
|
735 |
for topic_idx, topic in enumerate(sub_module['topics']):
|
|
|
736 |
session_key = f"session_{module_idx}_{sub_idx}_{topic_idx}"
|
737 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
738 |
with st.container():
|
|
|
739 |
col1, col2, col3 = st.columns([3, 2, 1])
|
740 |
with col1:
|
741 |
new_topic = st.text_input(
|
742 |
-
"
|
743 |
-
value=
|
744 |
key=f"{session_key}_topic"
|
745 |
)
|
746 |
-
|
|
|
|
|
|
|
|
|
747 |
|
748 |
with col2:
|
749 |
session_date = st.date_input(
|
@@ -759,6 +1015,59 @@ def create_course_form(faculty_name, faculty_id):
|
|
759 |
key=f"{session_key}_status"
|
760 |
)
|
761 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
762 |
# Create session object
|
763 |
session = {
|
764 |
"session_id": str(ObjectId()),
|
@@ -777,58 +1086,64 @@ def create_course_form(faculty_name, faculty_id):
|
|
777 |
},
|
778 |
"post_class": {
|
779 |
"assignments": []
|
780 |
-
}
|
|
|
781 |
}
|
782 |
all_sessions.append(session)
|
783 |
current_date = session_date + timedelta(days=7)
|
784 |
-
|
|
|
785 |
new_course_id = get_new_course_id()
|
786 |
course_title = st.session_state.course_plan['course_title']
|
|
|
787 |
# Final Save Button
|
788 |
-
|
789 |
-
|
790 |
-
|
791 |
-
|
792 |
-
|
793 |
-
|
794 |
-
|
795 |
-
|
796 |
-
|
797 |
-
|
798 |
-
|
799 |
-
|
800 |
-
|
801 |
-
|
802 |
-
|
803 |
-
|
804 |
-
|
805 |
-
|
806 |
|
807 |
-
|
808 |
-
|
809 |
-
|
810 |
-
|
811 |
-
|
812 |
-
|
813 |
-
|
814 |
-
|
815 |
-
}
|
816 |
}
|
817 |
-
}
|
818 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
819 |
|
820 |
-
# Clear session state
|
821 |
-
st.session_state.course_plan = None
|
822 |
-
st.session_state.edit_mode = False
|
823 |
-
|
824 |
-
# Optional: Add a button to view the created course
|
825 |
-
if st.button("View Course"):
|
826 |
-
# Add navigation logic here
|
827 |
-
pass
|
828 |
-
|
829 |
-
except Exception as e:
|
830 |
-
st.error(f"Error saving course: {e}")
|
831 |
-
|
832 |
from research_assistant_dashboard import display_research_assistant_dashboard
|
833 |
from goals2 import display_analyst_dashboard
|
834 |
def enroll_in_course(course_id, course_title, student):
|
|
|
15 |
import os
|
16 |
from openai import OpenAI
|
17 |
from dotenv import load_dotenv
|
18 |
+
from create_course2 import create_course, courses_collection, generate_perplexity_response, generate_session_resources, PERPLEXITY_API_KEY, validate_course_plan
|
19 |
import json
|
20 |
from bson import ObjectId
|
21 |
client = OpenAI(api_key=os.getenv("OPENAI_KEY"))
|
|
|
653 |
st.success(f"Analyst registered successfully! Your username is: {username}")
|
654 |
|
655 |
# Create Course feature
|
656 |
+
# def create_course_form2(faculty_name, faculty_id):
|
657 |
+
# """Display enhanced form to create a new course with AI-generated content"""
|
658 |
+
# st.title("Create New Course")
|
659 |
+
|
660 |
+
# if 'course_plan' not in st.session_state:
|
661 |
+
# st.session_state.course_plan = None
|
662 |
+
# if 'edit_mode' not in st.session_state:
|
663 |
+
# st.session_state.edit_mode = False
|
664 |
+
|
665 |
+
# # Initial Course Creation Form
|
666 |
+
# if not st.session_state.course_plan:
|
667 |
+
# with st.form("initial_course_form"):
|
668 |
+
# col1, col2 = st.columns(2)
|
669 |
+
# with col1:
|
670 |
+
# course_name = st.text_input("Course Name", placeholder="e.g., Introduction to Computer Science")
|
671 |
+
# faculty_info = st.text_input("Faculty", value=faculty_name, disabled=True)
|
672 |
+
# with col2:
|
673 |
+
# duration_weeks = st.number_input("Duration (weeks)", min_value=1, max_value=16, value=12)
|
674 |
+
# start_date = st.date_input("Start Date")
|
675 |
+
|
676 |
+
# generate_button = st.form_submit_button("Generate Course Structure", use_container_width=True)
|
677 |
+
|
678 |
+
# if generate_button and course_name:
|
679 |
+
# with st.spinner("Generating course structure..."):
|
680 |
+
# try:
|
681 |
+
# course_plan = generate_perplexity_response(PERPLEXITY_API_KEY, course_name)
|
682 |
+
# # print(course_plan)
|
683 |
+
# st.session_state.course_plan = json.loads(course_plan)
|
684 |
+
# st.session_state.start_date = start_date
|
685 |
+
# st.session_state.duration_weeks = duration_weeks
|
686 |
+
# st.rerun()
|
687 |
+
# except Exception as e:
|
688 |
+
# st.error(f"Error generating course structure: {e}")
|
689 |
+
|
690 |
+
# # Display and Edit Generated Course Content
|
691 |
+
# if st.session_state.course_plan:
|
692 |
+
# with st.expander("Course Overview", expanded=True):
|
693 |
+
# if not st.session_state.edit_mode:
|
694 |
+
# st.subheader(st.session_state.course_plan['course_title'])
|
695 |
+
# st.write(st.session_state.course_plan['course_description'])
|
696 |
+
# edit_button = st.button("Edit Course Details", use_container_width=True)
|
697 |
+
# if edit_button:
|
698 |
+
# st.session_state.edit_mode = True
|
699 |
+
# st.rerun()
|
700 |
+
# else:
|
701 |
+
# with st.form("edit_course_details"):
|
702 |
+
# st.session_state.course_plan['course_title'] = st.text_input(
|
703 |
+
# "Course Title",
|
704 |
+
# value=st.session_state.course_plan['course_title']
|
705 |
+
# )
|
706 |
+
# st.session_state.course_plan['course_description'] = st.text_area(
|
707 |
+
# "Course Description",
|
708 |
+
# value=st.session_state.course_plan['course_description']
|
709 |
+
# )
|
710 |
+
# if st.form_submit_button("Save Course Details"):
|
711 |
+
# st.session_state.edit_mode = False
|
712 |
+
# st.rerun()
|
713 |
+
|
714 |
+
# # Display Modules and Sessions
|
715 |
+
# st.subheader("Course Modules and Sessions")
|
716 |
+
|
717 |
+
# start_date = st.session_state.start_date
|
718 |
+
# current_date = start_date
|
719 |
+
|
720 |
+
# all_sessions = []
|
721 |
+
# for module_idx, module in enumerate(st.session_state.course_plan['modules']):
|
722 |
+
# with st.expander(f"📚 Module {module_idx + 1}: {module['module_title']}", expanded=True):
|
723 |
+
# # Edit module title
|
724 |
+
# new_module_title = st.text_input(
|
725 |
+
# f"Module {module_idx + 1} Title",
|
726 |
+
# value=module['module_title'],
|
727 |
+
# key=f"module_{module_idx}"
|
728 |
+
# )
|
729 |
+
# module['module_title'] = new_module_title
|
730 |
+
|
731 |
+
# for sub_idx, sub_module in enumerate(module['sub_modules']):
|
732 |
+
# st.markdown(f"### 📖 {sub_module['title']}")
|
733 |
+
|
734 |
+
# # Create sessions for each topic
|
735 |
+
# for topic_idx, topic in enumerate(sub_module['topics']):
|
736 |
+
# session_key = f"session_{module_idx}_{sub_idx}_{topic_idx}"
|
737 |
+
|
738 |
+
# with st.container():
|
739 |
+
# col1, col2, col3 = st.columns([3, 2, 1])
|
740 |
+
# with col1:
|
741 |
+
# new_topic = st.text_input(
|
742 |
+
# "Topic",
|
743 |
+
# value=topic,
|
744 |
+
# key=f"{session_key}_topic"
|
745 |
+
# )
|
746 |
+
# sub_module['topics'][topic_idx] = new_topic
|
747 |
+
|
748 |
+
# with col2:
|
749 |
+
# session_date = st.date_input(
|
750 |
+
# "Session Date",
|
751 |
+
# value=current_date,
|
752 |
+
# key=f"{session_key}_date"
|
753 |
+
# )
|
754 |
+
|
755 |
+
# with col3:
|
756 |
+
# session_status = st.selectbox(
|
757 |
+
# "Status",
|
758 |
+
# options=["upcoming", "in-progress", "completed"],
|
759 |
+
# key=f"{session_key}_status"
|
760 |
+
# )
|
761 |
+
|
762 |
+
# # Create session object
|
763 |
+
# session = {
|
764 |
+
# "session_id": str(ObjectId()),
|
765 |
+
# "title": new_topic,
|
766 |
+
# "date": datetime.combine(session_date, datetime.min.time()),
|
767 |
+
# "status": session_status,
|
768 |
+
# "module_name": module['module_title'],
|
769 |
+
# "created_at": datetime.utcnow(),
|
770 |
+
# "pre_class": {
|
771 |
+
# "resources": [],
|
772 |
+
# "completion_required": True
|
773 |
+
# },
|
774 |
+
# "in_class": {
|
775 |
+
# "quiz": [],
|
776 |
+
# "polls": []
|
777 |
+
# },
|
778 |
+
# "post_class": {
|
779 |
+
# "assignments": []
|
780 |
+
# }
|
781 |
+
# }
|
782 |
+
# all_sessions.append(session)
|
783 |
+
# current_date = session_date + timedelta(days=7)
|
784 |
+
|
785 |
+
# new_course_id = get_new_course_id()
|
786 |
+
# course_title = st.session_state.course_plan['course_title']
|
787 |
+
# # Final Save Button
|
788 |
+
# if st.button("Save Course", type="primary", use_container_width=True):
|
789 |
+
# try:
|
790 |
+
# course_doc = {
|
791 |
+
# "course_id": new_course_id,
|
792 |
+
# "title": course_title,
|
793 |
+
# "description": st.session_state.course_plan['course_description'],
|
794 |
+
# "faculty": faculty_name,
|
795 |
+
# "faculty_id": faculty_id,
|
796 |
+
# "duration": f"{st.session_state.duration_weeks} weeks",
|
797 |
+
# "start_date": datetime.combine(st.session_state.start_date, datetime.min.time()),
|
798 |
+
# "created_at": datetime.utcnow(),
|
799 |
+
# "sessions": all_sessions
|
800 |
+
# }
|
801 |
+
|
802 |
+
# # Insert into database
|
803 |
+
# courses_collection.insert_one(course_doc)
|
804 |
+
|
805 |
+
# st.success("Course successfully created!")
|
806 |
+
|
807 |
+
# # Update faculty collection
|
808 |
+
# faculty_collection.update_one(
|
809 |
+
# {"_id": st.session_state.user_id},
|
810 |
+
# {
|
811 |
+
# "$push": {
|
812 |
+
# "courses_taught": {
|
813 |
+
# "course_id": new_course_id,
|
814 |
+
# "title": course_title,
|
815 |
+
# }
|
816 |
+
# }
|
817 |
+
# },
|
818 |
+
# )
|
819 |
+
|
820 |
+
# # Clear session state
|
821 |
+
# st.session_state.course_plan = None
|
822 |
+
# st.session_state.edit_mode = False
|
823 |
+
|
824 |
+
# # Optional: Add a button to view the created course
|
825 |
+
# if st.button("View Course"):
|
826 |
+
# # Add navigation logic here
|
827 |
+
# pass
|
828 |
+
|
829 |
+
# except Exception as e:
|
830 |
+
# st.error(f"Error saving course: {e}")
|
831 |
+
|
832 |
+
|
833 |
+
def remove_json_backticks(json_string):
|
834 |
+
"""Remove backticks and 'json' from the JSON object string"""
|
835 |
+
return json_string.replace("```json", "").replace("```", "").strip()
|
836 |
+
|
837 |
+
|
838 |
def create_course_form(faculty_name, faculty_id):
|
839 |
+
"""Display enhanced form to create a new course with AI-generated content and resources"""
|
840 |
+
|
841 |
st.title("Create New Course")
|
842 |
|
843 |
if 'course_plan' not in st.session_state:
|
844 |
st.session_state.course_plan = None
|
845 |
if 'edit_mode' not in st.session_state:
|
846 |
st.session_state.edit_mode = False
|
847 |
+
if 'resources_map' not in st.session_state:
|
848 |
+
st.session_state.resources_map = {}
|
849 |
+
if 'start_date' not in st.session_state:
|
850 |
+
st.session_state.start_date = None
|
851 |
+
if 'duration_weeks' not in st.session_state:
|
852 |
+
st.session_state.duration_weeks = None
|
853 |
+
if 'sessions_per_week' not in st.session_state:
|
854 |
+
st.session_state.sessions_per_week = None
|
855 |
+
|
856 |
|
857 |
# Initial Course Creation Form
|
858 |
if not st.session_state.course_plan:
|
|
|
861 |
with col1:
|
862 |
course_name = st.text_input("Course Name", placeholder="e.g., Introduction to Computer Science")
|
863 |
faculty_info = st.text_input("Faculty", value=faculty_name, disabled=True)
|
864 |
+
sessions_per_week = st.number_input("Sessions Per Week", min_value=1, max_value=5, value=2)
|
865 |
with col2:
|
866 |
duration_weeks = st.number_input("Duration (weeks)", min_value=1, max_value=16, value=12)
|
867 |
start_date = st.date_input("Start Date")
|
|
|
869 |
generate_button = st.form_submit_button("Generate Course Structure", use_container_width=True)
|
870 |
|
871 |
if generate_button and course_name:
|
872 |
+
with st.spinner("Generating course structure and resources..."):
|
873 |
try:
|
874 |
+
# Generate course plan with resources
|
875 |
+
course_plan = generate_perplexity_response(
|
876 |
+
PERPLEXITY_API_KEY,
|
877 |
+
course_name,
|
878 |
+
duration_weeks,
|
879 |
+
sessions_per_week
|
880 |
+
)
|
881 |
+
try:
|
882 |
+
course_plan_json = json.loads(course_plan)
|
883 |
+
validate_course_plan(course_plan_json)
|
884 |
+
st.session_state.course_plan = course_plan_json
|
885 |
+
except (json.JSONDecodeError, ValueError) as e:
|
886 |
+
st.error(f"Error in course plan structure: {e}")
|
887 |
+
return
|
888 |
st.session_state.start_date = start_date
|
889 |
st.session_state.duration_weeks = duration_weeks
|
890 |
+
st.session_state.sessions_per_week = sessions_per_week
|
891 |
+
|
892 |
+
# Generate resources for all sessions
|
893 |
+
session_titles = []
|
894 |
+
for module in st.session_state.course_plan['modules']:
|
895 |
+
for sub_module in module['sub_modules']:
|
896 |
+
for topic in sub_module['topics']:
|
897 |
+
# session_titles.append(topic['title'])
|
898 |
+
# session_titles.append(topic)
|
899 |
+
if isinstance(topic, dict):
|
900 |
+
session_titles.append(topic['title'])
|
901 |
+
else:
|
902 |
+
session_titles.append(topic)
|
903 |
+
# In generate_session_resources function, add validation:
|
904 |
+
if not session_titles:
|
905 |
+
return json.dumps({"session_resources": []})
|
906 |
+
resources_response = generate_session_resources(PERPLEXITY_API_KEY, session_titles)
|
907 |
+
without_backticks = remove_json_backticks(resources_response)
|
908 |
+
resources = json.loads(without_backticks)
|
909 |
+
st.session_state.resources_map = {
|
910 |
+
resource['session_title']: resource['resources']
|
911 |
+
for resource in resources['session_resources']
|
912 |
+
}
|
913 |
+
# Add error handling for the resources map
|
914 |
+
# if st.session_state.resources_map is None:
|
915 |
+
# st.session_state.resources_map = {}
|
916 |
+
|
917 |
st.rerun()
|
918 |
except Exception as e:
|
919 |
st.error(f"Error generating course structure: {e}")
|
|
|
924 |
if not st.session_state.edit_mode:
|
925 |
st.subheader(st.session_state.course_plan['course_title'])
|
926 |
st.write(st.session_state.course_plan['course_description'])
|
927 |
+
col1, col2, col3 = st.columns(3)
|
928 |
+
with col1:
|
929 |
+
st.write(f"**Start Date:** {st.session_state.start_date}")
|
930 |
+
with col2:
|
931 |
+
st.write(f"**Duration (weeks):** {st.session_state.duration_weeks}")
|
932 |
+
with col3:
|
933 |
+
st.write(f"**Sessions Per Week:** {st.session_state.sessions_per_week}")
|
934 |
+
|
935 |
edit_button = st.button("Edit Course Details", use_container_width=True)
|
936 |
if edit_button:
|
937 |
st.session_state.edit_mode = True
|
|
|
961 |
with st.expander(f"📚 Module {module_idx + 1}: {module['module_title']}", expanded=True):
|
962 |
# Edit module title
|
963 |
new_module_title = st.text_input(
|
964 |
+
f"Edit Module Title",
|
965 |
value=module['module_title'],
|
966 |
key=f"module_{module_idx}"
|
967 |
)
|
968 |
module['module_title'] = new_module_title
|
969 |
|
970 |
for sub_idx, sub_module in enumerate(module['sub_modules']):
|
971 |
+
st.markdown("<br>", unsafe_allow_html=True) # Add gap between sessions
|
972 |
+
# st.markdown(f"### 📖 {sub_module['title']}")
|
973 |
+
st.markdown(f'<h3 style="font-size: 1.25rem;">📖 Chapter {sub_idx + 1}: {sub_module["title"]}</h3>', unsafe_allow_html=True)
|
974 |
+
# Possible fix:
|
975 |
+
# Inside the loop where topics are being processed:
|
976 |
+
|
977 |
for topic_idx, topic in enumerate(sub_module['topics']):
|
978 |
+
st.markdown("<br>", unsafe_allow_html=True) # Add gap between sessions
|
979 |
session_key = f"session_{module_idx}_{sub_idx}_{topic_idx}"
|
980 |
|
981 |
+
# Get topic title based on type
|
982 |
+
if isinstance(topic, dict):
|
983 |
+
current_topic_title = topic.get('title', '')
|
984 |
+
current_topic_display = current_topic_title
|
985 |
+
else:
|
986 |
+
current_topic_title = str(topic)
|
987 |
+
current_topic_display = current_topic_title
|
988 |
+
|
989 |
with st.container():
|
990 |
+
# Session Details
|
991 |
col1, col2, col3 = st.columns([3, 2, 1])
|
992 |
with col1:
|
993 |
new_topic = st.text_input(
|
994 |
+
f"Session {topic_idx + 1} Title",
|
995 |
+
value=current_topic_display,
|
996 |
key=f"{session_key}_topic"
|
997 |
)
|
998 |
+
# Update the topic in the data structure
|
999 |
+
if isinstance(topic, dict):
|
1000 |
+
topic['title'] = new_topic
|
1001 |
+
else:
|
1002 |
+
sub_module['topics'][topic_idx] = new_topic
|
1003 |
|
1004 |
with col2:
|
1005 |
session_date = st.date_input(
|
|
|
1015 |
key=f"{session_key}_status"
|
1016 |
)
|
1017 |
|
1018 |
+
# Display Resources
|
1019 |
+
if st.session_state.resources_map:
|
1020 |
+
# Try both the full topic title and the display title
|
1021 |
+
resources = None
|
1022 |
+
if isinstance(topic, dict) and topic.get('title') in st.session_state.resources_map:
|
1023 |
+
resources = st.session_state.resources_map[topic['title']]
|
1024 |
+
elif current_topic_title in st.session_state.resources_map:
|
1025 |
+
resources = st.session_state.resources_map[current_topic_title]
|
1026 |
+
|
1027 |
+
if resources:
|
1028 |
+
with st.container():
|
1029 |
+
# st.markdown("#### 📚 Session Resources")
|
1030 |
+
st.markdown(f'<h4 style="font-size: 1.25rem;">📚 Session Resources</h4>', unsafe_allow_html=True)
|
1031 |
+
# Readings Tab
|
1032 |
+
if resources.get('readings'):
|
1033 |
+
st.markdown(f'<h5 style="font-size: 1.1rem; margin-top: 1rem;">📖 External Resources</h5>', unsafe_allow_html=True)
|
1034 |
+
col1, col2 = st.columns(2)
|
1035 |
+
for idx, reading in enumerate(resources['readings']):
|
1036 |
+
with col1 if idx % 2 == 0 else col2:
|
1037 |
+
st.markdown(f"""
|
1038 |
+
- **{reading['title']}**
|
1039 |
+
- Type: {reading['type']}
|
1040 |
+
- Estimated reading time: {reading['estimated_read_time']}
|
1041 |
+
- [Access Resource]({reading['url']})
|
1042 |
+
""")
|
1043 |
+
|
1044 |
+
# Books Tab and Additional Resources Tab side-by-side
|
1045 |
+
col1, col2 = st.columns(2)
|
1046 |
+
|
1047 |
+
with col1:
|
1048 |
+
if resources.get('books'):
|
1049 |
+
st.markdown(f'<h5 style="font-size: 1.1rem; margin-top: 1rem;">📚 Reference Books</h5>', unsafe_allow_html=True)
|
1050 |
+
for book in resources['books']:
|
1051 |
+
with st.container():
|
1052 |
+
st.markdown(f"""
|
1053 |
+
- **{book['title']}**
|
1054 |
+
- Author: {book['author']}
|
1055 |
+
- ISBN: {book['isbn']}
|
1056 |
+
- Chapters: {book['chapters']}
|
1057 |
+
""")
|
1058 |
+
|
1059 |
+
with col2:
|
1060 |
+
if resources.get('additional_resources'):
|
1061 |
+
st.markdown(f'<h5 style="font-size: 1.1rem; margin-top: 1rem;">🔗 Additional Study Resources</h5>', unsafe_allow_html=True)
|
1062 |
+
for resource in resources['additional_resources']:
|
1063 |
+
with st.container():
|
1064 |
+
st.markdown(f"""
|
1065 |
+
- **{resource['title']}**
|
1066 |
+
- Type: {resource['type']}
|
1067 |
+
- Description: {resource['description']}
|
1068 |
+
- [Access Resource]({resource['url']})
|
1069 |
+
""")
|
1070 |
+
|
1071 |
# Create session object
|
1072 |
session = {
|
1073 |
"session_id": str(ObjectId()),
|
|
|
1086 |
},
|
1087 |
"post_class": {
|
1088 |
"assignments": []
|
1089 |
+
},
|
1090 |
+
"external_resources": st.session_state.resources_map.get(current_topic_title, {})
|
1091 |
}
|
1092 |
all_sessions.append(session)
|
1093 |
current_date = session_date + timedelta(days=7)
|
1094 |
+
|
1095 |
+
|
1096 |
new_course_id = get_new_course_id()
|
1097 |
course_title = st.session_state.course_plan['course_title']
|
1098 |
+
|
1099 |
# Final Save Button
|
1100 |
+
if st.button("Save Course", type="primary", use_container_width=True):
|
1101 |
+
try:
|
1102 |
+
course_doc = {
|
1103 |
+
"course_id": new_course_id,
|
1104 |
+
"title": course_title,
|
1105 |
+
"description": st.session_state.course_plan['course_description'],
|
1106 |
+
"faculty": faculty_name,
|
1107 |
+
"faculty_id": faculty_id,
|
1108 |
+
"duration": f"{st.session_state.duration_weeks} weeks",
|
1109 |
+
"sessions_per_week": st.session_state.sessions_per_week,
|
1110 |
+
"start_date": datetime.combine(st.session_state.start_date, datetime.min.time()),
|
1111 |
+
"created_at": datetime.utcnow(),
|
1112 |
+
"sessions": all_sessions
|
1113 |
+
}
|
1114 |
+
|
1115 |
+
# Insert into database
|
1116 |
+
courses_collection.insert_one(course_doc)
|
1117 |
+
st.success("Course successfully created!")
|
1118 |
|
1119 |
+
# Update faculty collection
|
1120 |
+
faculty_collection.update_one(
|
1121 |
+
{"_id": st.session_state.user_id},
|
1122 |
+
{
|
1123 |
+
"$push": {
|
1124 |
+
"courses_taught": {
|
1125 |
+
"course_id": new_course_id,
|
1126 |
+
"title": course_title,
|
|
|
1127 |
}
|
1128 |
+
}
|
1129 |
+
}
|
1130 |
+
)
|
1131 |
+
|
1132 |
+
# Clear session state
|
1133 |
+
st.session_state.course_plan = None
|
1134 |
+
st.session_state.edit_mode = False
|
1135 |
+
st.session_state.resources_map = {}
|
1136 |
+
|
1137 |
+
# Optional: Add a button to view the created course
|
1138 |
+
if st.button("View Course"):
|
1139 |
+
# Add navigation logic here
|
1140 |
+
pass
|
1141 |
+
|
1142 |
+
except Exception as e:
|
1143 |
+
st.error(f"Error saving course: {e}")
|
1144 |
+
|
1145 |
+
|
1146 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1147 |
from research_assistant_dashboard import display_research_assistant_dashboard
|
1148 |
from goals2 import display_analyst_dashboard
|
1149 |
def enroll_in_course(course_id, course_title, student):
|
create_course2.py
ADDED
@@ -0,0 +1,331 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datetime import datetime, timedelta
|
2 |
+
import os
|
3 |
+
from typing import Dict, List, Any
|
4 |
+
from pymongo import MongoClient
|
5 |
+
import requests
|
6 |
+
import uuid
|
7 |
+
import openai
|
8 |
+
from openai import OpenAI
|
9 |
+
import streamlit as st
|
10 |
+
from bson import ObjectId
|
11 |
+
from dotenv import load_dotenv
|
12 |
+
import json
|
13 |
+
|
14 |
+
load_dotenv()
|
15 |
+
MONGODB_URI = os.getenv("MONGO_URI")
|
16 |
+
PERPLEXITY_API_KEY = os.getenv("PERPLEXITY_KEY")
|
17 |
+
OPENAI_API_KEY = os.getenv("OPENAI_KEY")
|
18 |
+
|
19 |
+
client = MongoClient(MONGODB_URI)
|
20 |
+
db = client['novascholar_db']
|
21 |
+
courses_collection = db['courses']
|
22 |
+
|
23 |
+
def generate_perplexity_response(api_key, course_name, duration_weeks, sessions_per_week):
|
24 |
+
headers = {
|
25 |
+
"accept": "application/json",
|
26 |
+
"content-type": "application/json",
|
27 |
+
"authorization": f"Bearer {api_key}"
|
28 |
+
}
|
29 |
+
|
30 |
+
# Calculate sessions based on duration
|
31 |
+
total_sessions = duration_weeks * sessions_per_week # Assuming 2 sessions per week
|
32 |
+
|
33 |
+
prompt = f"""
|
34 |
+
You are an expert educational AI assistant specializing in curriculum design and instructional planning. Your task is to generate a comprehensive, academically rigorous course structure for the course {course_name} that fits exactly within {duration_weeks} weeks with {total_sessions} total sessions ({sessions_per_week} sessions per week).
|
35 |
+
|
36 |
+
Please generate a detailed course structure in JSON format following these specifications:
|
37 |
+
|
38 |
+
1. The course structure must be designed for exactly {duration_weeks} weeks with {total_sessions} total sessions
|
39 |
+
2. Each module should contain an appropriate number of sessions that sum up to exactly {total_sessions}
|
40 |
+
3. Each session should be designed for a 1-1.5-hour class duration
|
41 |
+
4. Follow standard academic practices and nomenclature
|
42 |
+
5. Ensure progressive complexity from foundational to advanced concepts
|
43 |
+
6. The course_title should exactly match the course name provided
|
44 |
+
7. Ensure that the property names are enclosed in double quotes (") and followed by a colon (:), and the values are enclosed in double quotes (").
|
45 |
+
8. **DO NOT INCLUDE THE WORD JSON IN THE OUTPUT STRING, DO NOT INCLUDE BACKTICKS (```) IN THE OUTPUT, AND DO NOT INCLUDE ANY OTHER TEXT, OTHER THAN THE ACTUAL JSON RESPONSE. START THE RESPONSE STRING WITH AN OPEN CURLY BRACE {{ AND END WITH A CLOSING CURLY BRACE }}.**
|
46 |
+
|
47 |
+
The JSON response should follow this structure:
|
48 |
+
{{
|
49 |
+
"course_title": "string",
|
50 |
+
"course_description": "string",
|
51 |
+
"total_duration_weeks": {duration_weeks},
|
52 |
+
"sessions_per_week": {sessions_per_week},
|
53 |
+
"total_sessions": {total_sessions},
|
54 |
+
"modules": [
|
55 |
+
{{
|
56 |
+
"module_title": "string",
|
57 |
+
"module_duration_sessions": number,
|
58 |
+
"sub_modules": [
|
59 |
+
{{
|
60 |
+
"title": "string",
|
61 |
+
"topics": [
|
62 |
+
{{
|
63 |
+
"title": "string",
|
64 |
+
"short_description": "string",
|
65 |
+
"concise_learning_objectives": ["string"]
|
66 |
+
}}
|
67 |
+
]
|
68 |
+
}}
|
69 |
+
]
|
70 |
+
}}
|
71 |
+
]
|
72 |
+
}}
|
73 |
+
|
74 |
+
Ensure that:
|
75 |
+
1. The sum of all module_duration_sessions equals exactly {total_sessions}
|
76 |
+
2. Each topic has clear learning objectives
|
77 |
+
3. Topics build upon each other logically
|
78 |
+
4. Content is distributed evenly across the available sessions
|
79 |
+
5. **This Instruction is Strictly followed: **DO NOT INCLUDE THE WORD JSON IN THE OUTPUT STRING, DO NOT INCLUDE BACKTICKS (```) IN THE OUTPUT, AND DO NOT INCLUDE ANY OTHER TEXT, OTHER THAN THE ACTUAL JSON RESPONSE. START THE RESPONSE STRING WITH AN OPEN CURLY BRACE {{ AND END WITH A CLOSING CURLY BRACE }}.****
|
80 |
+
|
81 |
+
"""
|
82 |
+
|
83 |
+
messages = [
|
84 |
+
{
|
85 |
+
"role": "system",
|
86 |
+
"content": (
|
87 |
+
"You are an expert educational AI assistant specializing in course design and curriculum planning. "
|
88 |
+
"Your task is to generate accurate, detailed, and structured educational content that precisely fits "
|
89 |
+
"the specified duration."
|
90 |
+
),
|
91 |
+
},
|
92 |
+
{
|
93 |
+
"role": "user",
|
94 |
+
"content": prompt
|
95 |
+
},
|
96 |
+
]
|
97 |
+
|
98 |
+
try:
|
99 |
+
client = OpenAI(api_key=api_key, base_url="https://api.perplexity.ai")
|
100 |
+
response = client.chat.completions.create(
|
101 |
+
model="llama-3.1-sonar-small-128k-online",
|
102 |
+
messages=messages
|
103 |
+
)
|
104 |
+
content = response.choices[0].message.content
|
105 |
+
|
106 |
+
# Validate session count
|
107 |
+
course_plan = json.loads(content)
|
108 |
+
total_planned_sessions = sum(
|
109 |
+
module.get('module_duration_sessions', 0)
|
110 |
+
for module in course_plan.get('modules', [])
|
111 |
+
)
|
112 |
+
|
113 |
+
if abs(total_planned_sessions - total_sessions) > 5:
|
114 |
+
raise ValueError(f"Generated plan has {total_planned_sessions} sessions, but {total_sessions} were requested")
|
115 |
+
|
116 |
+
return content
|
117 |
+
except Exception as e:
|
118 |
+
st.error(f"Failed to fetch data from Perplexity API: {e}")
|
119 |
+
return ""
|
120 |
+
|
121 |
+
def generate_session_resources(api_key, session_titles: List[str]):
|
122 |
+
"""
|
123 |
+
Generate relevant resources for each session title separately
|
124 |
+
"""
|
125 |
+
resources_prompt = f"""
|
126 |
+
You are an expert educational content curator. For each session title provided, suggest highly relevant and accurate learning resources.
|
127 |
+
Please provide resources for these sessions: {session_titles}
|
128 |
+
|
129 |
+
For each session, provide resources in this JSON format:
|
130 |
+
{{
|
131 |
+
"session_resources": [
|
132 |
+
{{
|
133 |
+
"session_title": "string",
|
134 |
+
"resources": {{
|
135 |
+
"readings": [
|
136 |
+
{{
|
137 |
+
"title": "string",
|
138 |
+
"url": "string",
|
139 |
+
"type": "string",
|
140 |
+
"estimated_read_time": "string"
|
141 |
+
}}
|
142 |
+
],
|
143 |
+
"books": [
|
144 |
+
{{
|
145 |
+
"title": "string",
|
146 |
+
"author": "string",
|
147 |
+
"isbn": "string",
|
148 |
+
"chapters": "string"
|
149 |
+
}}
|
150 |
+
],
|
151 |
+
"additional_resources": [
|
152 |
+
{{
|
153 |
+
"title": "string",
|
154 |
+
"url": "string",
|
155 |
+
"type": "string",
|
156 |
+
"description": "string"
|
157 |
+
}}
|
158 |
+
]
|
159 |
+
}}
|
160 |
+
}}
|
161 |
+
]
|
162 |
+
}}
|
163 |
+
|
164 |
+
Guidelines:
|
165 |
+
1. Ensure all URLs are real and currently active
|
166 |
+
2. Prioritize high-quality, authoritative sources
|
167 |
+
3. Include 1-2 resources of each type
|
168 |
+
5. For readings, include a mix of academic and practical resources. It can exceed to 3-4 readings
|
169 |
+
6. Book references should be real, recently published works
|
170 |
+
7. Additional resources can include tools, documentation, or practice platforms
|
171 |
+
8. Ensure that the property names are enclosed in double quotes (") and followed by a colon (:), and the values are enclosed in double quotes (").
|
172 |
+
9. ***NOTE: **DO NOT INCLUDE THE WORD JSON IN THE OUTPUT STRING, DO NOT INCLUDE BACKTICKS (```) IN THE OUTPUT, AND DO NOT INCLUDE ANY OTHER TEXT, OTHER THAN THE ACTUAL JSON RESPONSE. START THE RESPONSE STRING WITH AN OPEN CURLY BRACE {{ AND END WITH A CLOSING CURLY BRACE }}.**
|
173 |
+
"""
|
174 |
+
|
175 |
+
messages = [
|
176 |
+
{
|
177 |
+
"role": "system",
|
178 |
+
"content": "You are an expert educational content curator, focused on providing accurate and relevant learning resources.",
|
179 |
+
},
|
180 |
+
{
|
181 |
+
"role": "user",
|
182 |
+
"content": resources_prompt
|
183 |
+
},
|
184 |
+
]
|
185 |
+
|
186 |
+
try:
|
187 |
+
client = OpenAI(api_key=api_key, base_url="https://api.perplexity.ai")
|
188 |
+
response = client.chat.completions.create(
|
189 |
+
model="llama-3.1-sonar-small-128k-online",
|
190 |
+
messages=messages
|
191 |
+
)
|
192 |
+
print("Response is: \n", response.choices[0].message.content)
|
193 |
+
# try:
|
194 |
+
# return json.loads(response.choices[0].message.content)
|
195 |
+
# except json.JSONDecodeError as e:
|
196 |
+
# st.error(f"Failed to decode JSON response: {e}")
|
197 |
+
# return None
|
198 |
+
return response.choices[0].message.content
|
199 |
+
except Exception as e:
|
200 |
+
st.error(f"Failed to generate resources: {e}")
|
201 |
+
return None
|
202 |
+
|
203 |
+
def validate_course_plan(course_plan):
|
204 |
+
required_fields = ['course_title', 'course_description', 'modules']
|
205 |
+
if not all(field in course_plan for field in required_fields):
|
206 |
+
raise ValueError("Invalid course plan structure")
|
207 |
+
|
208 |
+
for module in course_plan['modules']:
|
209 |
+
if 'module_title' not in module or 'sub_modules' not in module:
|
210 |
+
raise ValueError("Invalid module structure")
|
211 |
+
|
212 |
+
def create_session(title: str, date: datetime, module_name: str, resources: dict):
|
213 |
+
"""Create a session document with pre-class, in-class, and post-class components."""
|
214 |
+
return {
|
215 |
+
"session_id": ObjectId(),
|
216 |
+
"title": title,
|
217 |
+
"date": date,
|
218 |
+
"status": "upcoming",
|
219 |
+
"created_at": datetime.utcnow(),
|
220 |
+
"module_name": module_name,
|
221 |
+
"pre_class": {
|
222 |
+
"resources": [],
|
223 |
+
"completion_required": True
|
224 |
+
},
|
225 |
+
"in_class": {
|
226 |
+
"quiz": [],
|
227 |
+
"polls": []
|
228 |
+
},
|
229 |
+
"post_class": {
|
230 |
+
"assignments": []
|
231 |
+
},
|
232 |
+
"external_resources": {
|
233 |
+
"readings": resources.get("readings", []),
|
234 |
+
"books": resources.get("books", []),
|
235 |
+
"additional_resources": resources.get("additional_resources", [])
|
236 |
+
}
|
237 |
+
}
|
238 |
+
|
239 |
+
def create_course(course_name: str, start_date: datetime, duration_weeks: int, sessions_per_week: int):
|
240 |
+
# First generate a course plan using Perplexity API
|
241 |
+
# course_plan = generate_perplexity_response(PERPLEXITY_API_KEY, course_name, duration_weeks, sessions_per_week)
|
242 |
+
# course_plan_json = json.loads(course_plan)
|
243 |
+
|
244 |
+
# print("Course Structure is: \n", course_plan_json);
|
245 |
+
|
246 |
+
# Earlier Code:
|
247 |
+
# Generate sessions for each module with resources
|
248 |
+
# all_sessions = []
|
249 |
+
# current_date = start_date
|
250 |
+
|
251 |
+
# for module in course_plan_json['modules']:
|
252 |
+
# for sub_module in module['sub_modules']:
|
253 |
+
# for topic in sub_module['topics']:
|
254 |
+
# session = create_session(
|
255 |
+
# title=topic['title'],
|
256 |
+
# date=current_date,
|
257 |
+
# module_name=module['module_title'],
|
258 |
+
# resources=topic['resources']
|
259 |
+
# )
|
260 |
+
# all_sessions.append(session)
|
261 |
+
# current_date += timedelta(days=3.5) # Spacing sessions evenly across the week
|
262 |
+
|
263 |
+
# return course_plan_json, all_sessions
|
264 |
+
|
265 |
+
# New Code:
|
266 |
+
# Extract all session titles
|
267 |
+
session_titles = []
|
268 |
+
# Load the course plan JSON
|
269 |
+
course_plan_json = {}
|
270 |
+
with open('sample_files/sample_course.json', 'r') as file:
|
271 |
+
course_plan_json = json.load(file)
|
272 |
+
|
273 |
+
for module in course_plan_json['modules']:
|
274 |
+
for sub_module in module['sub_modules']:
|
275 |
+
for topic in sub_module['topics']:
|
276 |
+
session_titles.append(topic['title'])
|
277 |
+
|
278 |
+
# Generate resources for all sessions
|
279 |
+
session_resources = generate_session_resources(PERPLEXITY_API_KEY, session_titles)
|
280 |
+
# print("Session Resources are: \n", session_resources)
|
281 |
+
resources = json.loads(session_resources)
|
282 |
+
# print("Resources JSON is: \n", resources_json)
|
283 |
+
|
284 |
+
# print("Session Resources are: \n", session_resources)
|
285 |
+
|
286 |
+
# Create a mapping of session titles to their resources
|
287 |
+
|
288 |
+
# Import Resources JSON
|
289 |
+
# resources = {}
|
290 |
+
# with open('sample_files/sample_course_resources.json', 'r') as file:
|
291 |
+
# resources = json.load(file)
|
292 |
+
|
293 |
+
resources_map = {
|
294 |
+
resource['session_title']: resource['resources']
|
295 |
+
for resource in resources['session_resources']
|
296 |
+
}
|
297 |
+
print("Resources Map is: \n", resources_map)
|
298 |
+
# print("Sample is: ", resources_map.get('Overview of ML Concepts, History, and Applications'));
|
299 |
+
# Generate sessions with their corresponding resources
|
300 |
+
all_sessions = []
|
301 |
+
current_date = start_date
|
302 |
+
|
303 |
+
for module in course_plan_json['modules']:
|
304 |
+
for sub_module in module['sub_modules']:
|
305 |
+
for topic in sub_module['topics']:
|
306 |
+
session = create_session(
|
307 |
+
title=topic['title'],
|
308 |
+
date=current_date,
|
309 |
+
module_name=module['module_title'],
|
310 |
+
resources=resources_map.get(topic['title'], {})
|
311 |
+
)
|
312 |
+
all_sessions.append(session)
|
313 |
+
current_date += timedelta(days=3.5)
|
314 |
+
|
315 |
+
print("All Sessions are: \n", all_sessions)
|
316 |
+
|
317 |
+
def get_new_course_id():
|
318 |
+
"""Generate a new course ID by incrementing the last course ID"""
|
319 |
+
last_course = courses_collection.find_one(sort=[("course_id", -1)])
|
320 |
+
if last_course:
|
321 |
+
last_course_id = int(last_course["course_id"][2:])
|
322 |
+
new_course_id = f"CS{last_course_id + 1}"
|
323 |
+
else:
|
324 |
+
new_course_id = "CS101"
|
325 |
+
return new_course_id
|
326 |
+
|
327 |
+
# if __name__ == "__main__":
|
328 |
+
# course_name = "Introduction to Machine Learning"
|
329 |
+
# start_date = datetime(2022, 9, 1)
|
330 |
+
# duration_weeks = 4
|
331 |
+
# create_course(course_name, start_date, duration_weeks, 3)
|
pre_class_analytics4.py
ADDED
@@ -0,0 +1,526 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import numpy as np
|
3 |
+
from datetime import datetime
|
4 |
+
from typing import List, Dict, Any, Tuple
|
5 |
+
import spacy
|
6 |
+
from collections import Counter, defaultdict
|
7 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
8 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
9 |
+
from textblob import TextBlob
|
10 |
+
import networkx as nx
|
11 |
+
from scipy import stats
|
12 |
+
import logging
|
13 |
+
import json
|
14 |
+
from dataclasses import dataclass
|
15 |
+
from enum import Enum
|
16 |
+
|
17 |
+
# Configure logging
|
18 |
+
logging.basicConfig(level=logging.INFO)
|
19 |
+
logger = logging.getLogger(__name__)
|
20 |
+
|
21 |
+
class TopicDifficulty(Enum):
|
22 |
+
EASY = "easy"
|
23 |
+
MODERATE = "moderate"
|
24 |
+
DIFFICULT = "difficult"
|
25 |
+
VERY_DIFFICULT = "very_difficult"
|
26 |
+
|
27 |
+
@dataclass
|
28 |
+
class QuestionMetrics:
|
29 |
+
complexity_score: float
|
30 |
+
follow_up_count: int
|
31 |
+
clarification_count: int
|
32 |
+
time_spent: float
|
33 |
+
sentiment_score: float
|
34 |
+
|
35 |
+
@dataclass
|
36 |
+
class TopicInsights:
|
37 |
+
difficulty_level: TopicDifficulty
|
38 |
+
common_confusion_points: List[str]
|
39 |
+
question_patterns: List[str]
|
40 |
+
time_distribution: Dict[str, float]
|
41 |
+
engagement_metrics: Dict[str, float]
|
42 |
+
recommended_focus_areas: List[str]
|
43 |
+
|
44 |
+
class PreClassAnalytics:
|
45 |
+
def __init__(self, nlp_model: str = "en_core_web_lg"):
|
46 |
+
"""Initialize the analytics system with necessary components."""
|
47 |
+
self.nlp = spacy.load(nlp_model)
|
48 |
+
self.question_indicators = {
|
49 |
+
"what", "why", "how", "when", "where", "which", "who",
|
50 |
+
"whose", "whom", "can", "could", "would", "will", "explain"
|
51 |
+
}
|
52 |
+
self.confusion_indicators = {
|
53 |
+
"confused", "don't understand", "unclear", "not clear",
|
54 |
+
"stuck", "difficult", "hard", "help", "explain again"
|
55 |
+
}
|
56 |
+
self.follow_up_indicators = {
|
57 |
+
"also", "another", "additionally", "furthermore", "moreover",
|
58 |
+
"besides", "related", "similarly", "again"
|
59 |
+
}
|
60 |
+
|
61 |
+
def preprocess_chat_history(self, chat_history: List[Dict]) -> pd.DataFrame:
|
62 |
+
"""Convert chat history to DataFrame with enhanced features."""
|
63 |
+
messages = []
|
64 |
+
for chat in chat_history:
|
65 |
+
user_id = chat['user_id']['$oid']
|
66 |
+
for msg in chat['messages']:
|
67 |
+
messages.append({
|
68 |
+
'user_id': user_id,
|
69 |
+
'timestamp': pd.to_datetime(msg['timestamp']['$date']),
|
70 |
+
'prompt': msg['prompt'],
|
71 |
+
'response': msg['response'],
|
72 |
+
'is_question': any(q in msg['prompt'].lower() for q in self.question_indicators),
|
73 |
+
'shows_confusion': any(c in msg['prompt'].lower() for c in self.confusion_indicators),
|
74 |
+
'is_followup': any(f in msg['prompt'].lower() for f in self.follow_up_indicators)
|
75 |
+
})
|
76 |
+
|
77 |
+
df = pd.DataFrame(messages)
|
78 |
+
df['sentiment'] = df['prompt'].apply(lambda x: TextBlob(x).sentiment.polarity)
|
79 |
+
return df
|
80 |
+
|
81 |
+
def extract_topic_hierarchies(self, df: pd.DataFrame) -> Dict[str, List[str]]:
|
82 |
+
"""Extract hierarchical topic relationships from conversations."""
|
83 |
+
topic_hierarchy = defaultdict(list)
|
84 |
+
|
85 |
+
for _, row in df.iterrows():
|
86 |
+
doc = self.nlp(row['prompt'])
|
87 |
+
|
88 |
+
# Extract main topics and subtopics using noun chunks and dependencies
|
89 |
+
main_topics = []
|
90 |
+
subtopics = []
|
91 |
+
|
92 |
+
for chunk in doc.noun_chunks:
|
93 |
+
if chunk.root.dep_ in ('nsubj', 'dobj'):
|
94 |
+
main_topics.append(chunk.text.lower())
|
95 |
+
else:
|
96 |
+
subtopics.append(chunk.text.lower())
|
97 |
+
|
98 |
+
# Build hierarchy
|
99 |
+
for main_topic in main_topics:
|
100 |
+
topic_hierarchy[main_topic].extend(subtopics)
|
101 |
+
|
102 |
+
# Clean and deduplicate
|
103 |
+
return {k: list(set(v)) for k, v in topic_hierarchy.items()}
|
104 |
+
|
105 |
+
def analyze_topic_difficulty(self, df: pd.DataFrame, topic: str) -> TopicDifficulty:
|
106 |
+
"""Determine topic difficulty based on various metrics."""
|
107 |
+
topic_msgs = df[df['prompt'].str.contains(topic, case=False)]
|
108 |
+
|
109 |
+
# Calculate difficulty indicators
|
110 |
+
confusion_rate = topic_msgs['shows_confusion'].mean()
|
111 |
+
question_rate = topic_msgs['is_question'].mean()
|
112 |
+
follow_up_rate = topic_msgs['is_followup'].mean()
|
113 |
+
avg_sentiment = topic_msgs['sentiment'].mean()
|
114 |
+
|
115 |
+
# Calculate composite difficulty score
|
116 |
+
difficulty_score = (
|
117 |
+
confusion_rate * 0.4 +
|
118 |
+
question_rate * 0.3 +
|
119 |
+
follow_up_rate * 0.2 +
|
120 |
+
(1 - (avg_sentiment + 1) / 2) * 0.1
|
121 |
+
)
|
122 |
+
|
123 |
+
# Map score to difficulty level
|
124 |
+
if difficulty_score < 0.3:
|
125 |
+
return TopicDifficulty.EASY
|
126 |
+
elif difficulty_score < 0.5:
|
127 |
+
return TopicDifficulty.MODERATE
|
128 |
+
elif difficulty_score < 0.7:
|
129 |
+
return TopicDifficulty.DIFFICULT
|
130 |
+
else:
|
131 |
+
return TopicDifficulty.VERY_DIFFICULT
|
132 |
+
|
133 |
+
def identify_confusion_patterns(self, df: pd.DataFrame, topic: str) -> List[str]:
|
134 |
+
"""Identify common patterns in student confusion."""
|
135 |
+
confused_msgs = df[
|
136 |
+
(df['prompt'].str.contains(topic, case=False)) &
|
137 |
+
(df['shows_confusion'])
|
138 |
+
]['prompt']
|
139 |
+
|
140 |
+
patterns = []
|
141 |
+
for msg in confused_msgs:
|
142 |
+
doc = self.nlp(msg)
|
143 |
+
|
144 |
+
# Extract key phrases around confusion indicators
|
145 |
+
for sent in doc.sents:
|
146 |
+
for token in sent:
|
147 |
+
if token.text.lower() in self.confusion_indicators:
|
148 |
+
# Get context window around confusion indicator
|
149 |
+
context = sent.text
|
150 |
+
patterns.append(context)
|
151 |
+
|
152 |
+
# Group similar patterns
|
153 |
+
if patterns:
|
154 |
+
vectorizer = TfidfVectorizer(ngram_range=(1, 3))
|
155 |
+
tfidf_matrix = vectorizer.fit_transform(patterns)
|
156 |
+
similarity_matrix = cosine_similarity(tfidf_matrix)
|
157 |
+
|
158 |
+
# Cluster similar patterns
|
159 |
+
G = nx.Graph()
|
160 |
+
for i in range(len(patterns)):
|
161 |
+
for j in range(i + 1, len(patterns)):
|
162 |
+
if similarity_matrix[i][j] > 0.5: # Similarity threshold
|
163 |
+
G.add_edge(i, j)
|
164 |
+
|
165 |
+
# Extract representative patterns from each cluster
|
166 |
+
clusters = list(nx.connected_components(G))
|
167 |
+
return [patterns[min(cluster)] for cluster in clusters]
|
168 |
+
|
169 |
+
return []
|
170 |
+
|
171 |
+
def analyze_question_patterns(self, df: pd.DataFrame, topic: str) -> List[str]:
|
172 |
+
"""Analyze patterns in student questions about the topic."""
|
173 |
+
topic_questions = df[
|
174 |
+
(df['prompt'].str.contains(topic, case=False)) &
|
175 |
+
(df['is_question'])
|
176 |
+
]['prompt']
|
177 |
+
|
178 |
+
question_types = defaultdict(list)
|
179 |
+
for question in topic_questions:
|
180 |
+
doc = self.nlp(question)
|
181 |
+
|
182 |
+
# Categorize questions
|
183 |
+
if any(token.text.lower() in {"what", "define", "explain"} for token in doc):
|
184 |
+
question_types["conceptual"].append(question)
|
185 |
+
elif any(token.text.lower() in {"how", "steps", "process"} for token in doc):
|
186 |
+
question_types["procedural"].append(question)
|
187 |
+
elif any(token.text.lower() in {"why", "reason", "because"} for token in doc):
|
188 |
+
question_types["reasoning"].append(question)
|
189 |
+
else:
|
190 |
+
question_types["other"].append(question)
|
191 |
+
|
192 |
+
# Extract patterns from each category
|
193 |
+
patterns = []
|
194 |
+
for category, questions in question_types.items():
|
195 |
+
if questions:
|
196 |
+
vectorizer = TfidfVectorizer(ngram_range=(1, 3))
|
197 |
+
tfidf_matrix = vectorizer.fit_transform(questions)
|
198 |
+
|
199 |
+
# Get most representative questions
|
200 |
+
feature_array = np.mean(tfidf_matrix.toarray(), axis=0)
|
201 |
+
tfidf_sorting = np.argsort(feature_array)[::-1]
|
202 |
+
features = vectorizer.get_feature_names_out()
|
203 |
+
|
204 |
+
patterns.append(f"{category}: {' '.join(features[tfidf_sorting[:3]])}")
|
205 |
+
|
206 |
+
return patterns
|
207 |
+
|
208 |
+
def analyze_time_distribution(self, df: pd.DataFrame, topic: str) -> Dict[str, float]:
|
209 |
+
"""Analyze time spent on different aspects of the topic."""
|
210 |
+
topic_msgs = df[df['prompt'].str.contains(topic, case=False)].copy()
|
211 |
+
if len(topic_msgs) < 2:
|
212 |
+
return {}
|
213 |
+
|
214 |
+
topic_msgs['time_diff'] = topic_msgs['timestamp'].diff()
|
215 |
+
|
216 |
+
# Calculate time distribution
|
217 |
+
distribution = {
|
218 |
+
'total_time': topic_msgs['time_diff'].sum().total_seconds() / 60,
|
219 |
+
'avg_time_per_message': topic_msgs['time_diff'].mean().total_seconds() / 60,
|
220 |
+
'max_time_gap': topic_msgs['time_diff'].max().total_seconds() / 60,
|
221 |
+
'time_spent_on_questions': topic_msgs[topic_msgs['is_question']]['time_diff'].sum().total_seconds() / 60,
|
222 |
+
'time_spent_on_confusion': topic_msgs[topic_msgs['shows_confusion']]['time_diff'].sum().total_seconds() / 60
|
223 |
+
}
|
224 |
+
|
225 |
+
return distribution
|
226 |
+
|
227 |
+
def calculate_engagement_metrics(self, df: pd.DataFrame, topic: str) -> Dict[str, float]:
|
228 |
+
"""Calculate student engagement metrics for the topic."""
|
229 |
+
topic_msgs = df[df['prompt'].str.contains(topic, case=False)]
|
230 |
+
|
231 |
+
metrics = {
|
232 |
+
'message_count': len(topic_msgs),
|
233 |
+
'question_ratio': topic_msgs['is_question'].mean(),
|
234 |
+
'confusion_ratio': topic_msgs['shows_confusion'].mean(),
|
235 |
+
'follow_up_ratio': topic_msgs['is_followup'].mean(),
|
236 |
+
'avg_sentiment': topic_msgs['sentiment'].mean(),
|
237 |
+
'engagement_score': 0.0 # Will be calculated below
|
238 |
+
}
|
239 |
+
|
240 |
+
# Calculate engagement score
|
241 |
+
metrics['engagement_score'] = (
|
242 |
+
metrics['message_count'] * 0.3 +
|
243 |
+
metrics['question_ratio'] * 0.25 +
|
244 |
+
metrics['follow_up_ratio'] * 0.25 +
|
245 |
+
(metrics['avg_sentiment'] + 1) / 2 * 0.2 # Normalize sentiment to 0-1
|
246 |
+
)
|
247 |
+
|
248 |
+
return metrics
|
249 |
+
|
250 |
+
def generate_topic_insights(self, df: pd.DataFrame, topic: str) -> TopicInsights:
|
251 |
+
"""Generate comprehensive insights for a topic."""
|
252 |
+
difficulty = self.analyze_topic_difficulty(df, topic)
|
253 |
+
confusion_points = self.identify_confusion_patterns(df, topic)
|
254 |
+
question_patterns = self.analyze_question_patterns(df, topic)
|
255 |
+
time_distribution = self.analyze_time_distribution(df, topic)
|
256 |
+
engagement_metrics = self.calculate_engagement_metrics(df, topic)
|
257 |
+
|
258 |
+
# Generate recommended focus areas based on insights
|
259 |
+
focus_areas = []
|
260 |
+
|
261 |
+
if difficulty in (TopicDifficulty.DIFFICULT, TopicDifficulty.VERY_DIFFICULT):
|
262 |
+
focus_areas.append("Fundamental concept reinforcement needed")
|
263 |
+
|
264 |
+
if confusion_points:
|
265 |
+
focus_areas.append(f"Address common confusion around: {', '.join(confusion_points[:3])}")
|
266 |
+
|
267 |
+
if engagement_metrics['confusion_ratio'] > 0.3:
|
268 |
+
focus_areas.append("Consider alternative teaching approaches")
|
269 |
+
|
270 |
+
if time_distribution.get('time_spent_on_questions', 0) > time_distribution.get('total_time', 0) * 0.5:
|
271 |
+
focus_areas.append("More practical examples or demonstrations needed")
|
272 |
+
|
273 |
+
return TopicInsights(
|
274 |
+
difficulty_level=difficulty,
|
275 |
+
common_confusion_points=confusion_points,
|
276 |
+
question_patterns=question_patterns,
|
277 |
+
time_distribution=time_distribution,
|
278 |
+
engagement_metrics=engagement_metrics,
|
279 |
+
recommended_focus_areas=focus_areas
|
280 |
+
)
|
281 |
+
|
282 |
+
def analyze_student_progress(self, df: pd.DataFrame) -> Dict[str, Any]:
|
283 |
+
"""Analyze individual student progress and learning patterns."""
|
284 |
+
student_progress = {}
|
285 |
+
|
286 |
+
for student_id in df['user_id'].unique():
|
287 |
+
student_msgs = df[df['user_id'] == student_id]
|
288 |
+
|
289 |
+
# Calculate student-specific metrics
|
290 |
+
progress = {
|
291 |
+
'total_messages': len(student_msgs),
|
292 |
+
'questions_asked': student_msgs['is_question'].sum(),
|
293 |
+
'confusion_instances': student_msgs['shows_confusion'].sum(),
|
294 |
+
'avg_sentiment': student_msgs['sentiment'].mean(),
|
295 |
+
'topic_engagement': {},
|
296 |
+
'learning_pattern': self._identify_learning_pattern(student_msgs)
|
297 |
+
}
|
298 |
+
|
299 |
+
# Analyze topic-specific engagement
|
300 |
+
topics = self.extract_topic_hierarchies(student_msgs)
|
301 |
+
for topic in topics:
|
302 |
+
topic_msgs = student_msgs[student_msgs['prompt'].str.contains(topic, case=False)]
|
303 |
+
progress['topic_engagement'][topic] = {
|
304 |
+
'message_count': len(topic_msgs),
|
305 |
+
'confusion_rate': topic_msgs['shows_confusion'].mean(),
|
306 |
+
'sentiment_trend': stats.linregress(
|
307 |
+
range(len(topic_msgs)),
|
308 |
+
topic_msgs['sentiment']
|
309 |
+
).slope
|
310 |
+
}
|
311 |
+
|
312 |
+
student_progress[student_id] = progress
|
313 |
+
|
314 |
+
return student_progress
|
315 |
+
|
316 |
+
def _identify_learning_pattern(self, student_msgs: pd.DataFrame) -> str:
|
317 |
+
"""Identify student's learning pattern based on their interaction style."""
|
318 |
+
# Calculate key metrics
|
319 |
+
question_ratio = student_msgs['is_question'].mean()
|
320 |
+
confusion_ratio = student_msgs['shows_confusion'].mean()
|
321 |
+
follow_up_ratio = student_msgs['is_followup'].mean()
|
322 |
+
sentiment_trend = stats.linregress(
|
323 |
+
range(len(student_msgs)),
|
324 |
+
student_msgs['sentiment']
|
325 |
+
).slope
|
326 |
+
|
327 |
+
# Identify pattern
|
328 |
+
if question_ratio > 0.6:
|
329 |
+
return "Inquisitive Learner"
|
330 |
+
elif confusion_ratio > 0.4:
|
331 |
+
return "Needs Additional Support"
|
332 |
+
elif follow_up_ratio > 0.5:
|
333 |
+
return "Deep Dive Learner"
|
334 |
+
elif sentiment_trend > 0:
|
335 |
+
return "Progressive Learner"
|
336 |
+
else:
|
337 |
+
return "Steady Learner"
|
338 |
+
|
339 |
+
def generate_comprehensive_report(self, chat_history: List[Dict]) -> Dict[str, Any]:
|
340 |
+
"""Generate a comprehensive analytics report."""
|
341 |
+
# Preprocess chat history
|
342 |
+
df = self.preprocess_chat_history(chat_history)
|
343 |
+
|
344 |
+
# Extract topics
|
345 |
+
topics = self.extract_topic_hierarchies(df)
|
346 |
+
|
347 |
+
report = {
|
348 |
+
'topics': {},
|
349 |
+
'student_progress': self.analyze_student_progress(df),
|
350 |
+
'overall_metrics': {
|
351 |
+
'total_conversations': len(df),
|
352 |
+
'unique_students': df['user_id'].nunique(),
|
353 |
+
'avg_sentiment': df['sentiment'].mean(),
|
354 |
+
'most_discussed_topics': Counter(
|
355 |
+
topic for topics_list in topics.values()
|
356 |
+
for topic in topics_list
|
357 |
+
).most_common(5)
|
358 |
+
}
|
359 |
+
}
|
360 |
+
|
361 |
+
# Generate topic-specific insights
|
362 |
+
for main_topic, subtopics in topics.items():
|
363 |
+
subtopic_insights = {}
|
364 |
+
for subtopic in subtopics:
|
365 |
+
subtopic_insights[subtopic] = {
|
366 |
+
'insights': self.generate_topic_insights(df, subtopic),
|
367 |
+
'related_topics': [t for t in subtopics if t != subtopic],
|
368 |
+
'student_engagement': {
|
369 |
+
student_id: self.calculate_engagement_metrics(
|
370 |
+
df[df['user_id'] == student_id],
|
371 |
+
subtopic
|
372 |
+
)
|
373 |
+
for student_id in df['user_id'].unique()
|
374 |
+
}
|
375 |
+
}
|
376 |
+
|
377 |
+
report['topics'][main_topic] = {
|
378 |
+
'insights': self.generate_topic_insights(df, main_topic),
|
379 |
+
'subtopics': subtopic_insights,
|
380 |
+
'topic_relationships': {
|
381 |
+
'hierarchy_depth': len(subtopics),
|
382 |
+
'connection_strength': self._calculate_topic_connections(df, main_topic, subtopics),
|
383 |
+
'progression_path': self._identify_topic_progression(df, main_topic, subtopics)
|
384 |
+
}
|
385 |
+
}
|
386 |
+
|
387 |
+
# Add temporal analysis
|
388 |
+
report['temporal_analysis'] = {
|
389 |
+
'daily_engagement': df.groupby(df['timestamp'].dt.date).agg({
|
390 |
+
'user_id': 'count',
|
391 |
+
'is_question': 'sum',
|
392 |
+
'shows_confusion': 'sum',
|
393 |
+
'sentiment': 'mean'
|
394 |
+
}).to_dict(),
|
395 |
+
'peak_activity_hours': df.groupby(df['timestamp'].dt.hour)['user_id'].count().nlargest(3).to_dict(),
|
396 |
+
'learning_trends': self._analyze_learning_trends(df)
|
397 |
+
}
|
398 |
+
|
399 |
+
# Add recommendations
|
400 |
+
report['recommendations'] = self._generate_recommendations(report)
|
401 |
+
|
402 |
+
return report
|
403 |
+
|
404 |
+
def _calculate_topic_connections(self, df: pd.DataFrame, main_topic: str, subtopics: List[str]) -> Dict[str, float]:
|
405 |
+
"""Calculate connection strength between topics based on co-occurrence."""
|
406 |
+
connections = {}
|
407 |
+
main_topic_msgs = df[df['prompt'].str.contains(main_topic, case=False)]
|
408 |
+
|
409 |
+
for subtopic in subtopics:
|
410 |
+
cooccurrence = df[
|
411 |
+
df['prompt'].str.contains(main_topic, case=False) &
|
412 |
+
df['prompt'].str.contains(subtopic, case=False)
|
413 |
+
].shape[0]
|
414 |
+
|
415 |
+
connection_strength = cooccurrence / len(main_topic_msgs) if len(main_topic_msgs) > 0 else 0
|
416 |
+
connections[subtopic] = connection_strength
|
417 |
+
|
418 |
+
return connections
|
419 |
+
|
420 |
+
def _identify_topic_progression(self, df: pd.DataFrame, main_topic: str, subtopics: List[str]) -> List[str]:
|
421 |
+
"""Identify optimal topic progression path based on student interactions."""
|
422 |
+
topic_difficulties = {}
|
423 |
+
|
424 |
+
for subtopic in subtopics:
|
425 |
+
difficulty = self.analyze_topic_difficulty(df, subtopic)
|
426 |
+
topic_difficulties[subtopic] = difficulty.value
|
427 |
+
|
428 |
+
# Sort subtopics by difficulty
|
429 |
+
return sorted(subtopics, key=lambda x: topic_difficulties[x])
|
430 |
+
|
431 |
+
def _analyze_learning_trends(self, df: pd.DataFrame) -> Dict[str, Any]:
|
432 |
+
"""Analyze overall learning trends across the dataset."""
|
433 |
+
return {
|
434 |
+
'sentiment_trend': stats.linregress(
|
435 |
+
range(len(df)),
|
436 |
+
df['sentiment']
|
437 |
+
)._asdict(),
|
438 |
+
'confusion_trend': stats.linregress(
|
439 |
+
range(len(df)),
|
440 |
+
df['shows_confusion']
|
441 |
+
)._asdict(),
|
442 |
+
'engagement_progression': self._calculate_engagement_progression(df)
|
443 |
+
}
|
444 |
+
|
445 |
+
def _calculate_engagement_progression(self, df: pd.DataFrame) -> Dict[str, float]:
|
446 |
+
"""Calculate how student engagement changes over time."""
|
447 |
+
df['week'] = df['timestamp'].dt.isocalendar().week
|
448 |
+
weekly_engagement = df.groupby('week').agg({
|
449 |
+
'is_question': 'mean',
|
450 |
+
'shows_confusion': 'mean',
|
451 |
+
'is_followup': 'mean',
|
452 |
+
'sentiment': 'mean'
|
453 |
+
})
|
454 |
+
|
455 |
+
return {
|
456 |
+
'question_trend': stats.linregress(
|
457 |
+
range(len(weekly_engagement)),
|
458 |
+
weekly_engagement['is_question']
|
459 |
+
).slope,
|
460 |
+
'confusion_trend': stats.linregress(
|
461 |
+
range(len(weekly_engagement)),
|
462 |
+
weekly_engagement['shows_confusion']
|
463 |
+
).slope,
|
464 |
+
'follow_up_trend': stats.linregress(
|
465 |
+
range(len(weekly_engagement)),
|
466 |
+
weekly_engagement['is_followup']
|
467 |
+
).slope,
|
468 |
+
'sentiment_trend': stats.linregress(
|
469 |
+
range(len(weekly_engagement)),
|
470 |
+
weekly_engagement['sentiment']
|
471 |
+
).slope
|
472 |
+
}
|
473 |
+
|
474 |
+
def _generate_recommendations(self, report: Dict[str, Any]) -> List[str]:
|
475 |
+
"""Generate actionable recommendations based on the analysis."""
|
476 |
+
recommendations = []
|
477 |
+
|
478 |
+
# Analyze difficulty distribution
|
479 |
+
difficult_topics = [
|
480 |
+
topic for topic, data in report['topics'].items()
|
481 |
+
if data['insights'].difficulty_level in
|
482 |
+
(TopicDifficulty.DIFFICULT, TopicDifficulty.VERY_DIFFICULT)
|
483 |
+
]
|
484 |
+
|
485 |
+
if difficult_topics:
|
486 |
+
recommendations.append(
|
487 |
+
f"Consider providing additional resources for challenging topics: {', '.join(difficult_topics)}"
|
488 |
+
)
|
489 |
+
|
490 |
+
# Analyze student engagement
|
491 |
+
avg_engagement = np.mean([
|
492 |
+
progress['questions_asked'] / progress['total_messages']
|
493 |
+
for progress in report['student_progress'].values()
|
494 |
+
])
|
495 |
+
|
496 |
+
if avg_engagement < 0.3:
|
497 |
+
recommendations.append(
|
498 |
+
"Implement more interactive elements to increase student engagement"
|
499 |
+
)
|
500 |
+
|
501 |
+
# Analyze temporal patterns
|
502 |
+
peak_hours = list(report['temporal_analysis']['peak_activity_hours'].keys())
|
503 |
+
recommendations.append(
|
504 |
+
f"Consider scheduling additional support during peak activity hours: {peak_hours}"
|
505 |
+
)
|
506 |
+
|
507 |
+
# Analyze learning trends
|
508 |
+
sentiment_trend = report['temporal_analysis']['learning_trends']['sentiment_trend']
|
509 |
+
if sentiment_trend < 0:
|
510 |
+
recommendations.append(
|
511 |
+
"Review teaching approach to address declining student satisfaction"
|
512 |
+
)
|
513 |
+
|
514 |
+
return recommendations
|
515 |
+
|
516 |
+
if __name__ == "__main__":
|
517 |
+
# Load chat history data
|
518 |
+
with open("chat_history_corpus.json", "r", encoding="utf-8") as file:
|
519 |
+
chat_history = json.load(file)
|
520 |
+
|
521 |
+
# Initialize analytics system
|
522 |
+
analytics = PreClassAnalytics()
|
523 |
+
|
524 |
+
# Generate comprehensive report
|
525 |
+
report = analytics.generate_comprehensive_report(chat_history)
|
526 |
+
print(json.dumps(report, indent=2))
|
session_page.py
CHANGED
@@ -1288,11 +1288,41 @@ def get_preclass_analytics(session):
|
|
1288 |
# return refined_report
|
1289 |
|
1290 |
# Use the 2nd analytice engine (using LLM):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1291 |
analytics_generator = NovaScholarAnalytics()
|
1292 |
analytics2 = analytics_generator.generate_analytics(all_chat_histories, topics)
|
1293 |
# enriched_analytics = analytics_generator._enrich_analytics(analytics2)
|
1294 |
print("Analytics is: ", analytics2)
|
1295 |
-
|
|
|
|
|
|
|
|
|
1296 |
# print(json.dumps(analytics, indent=2))
|
1297 |
|
1298 |
|
@@ -1305,9 +1335,16 @@ def display_preclass_analytics2(session, course_id):
|
|
1305 |
# Initialize or get analytics data from session state
|
1306 |
if 'analytics_data' not in st.session_state:
|
1307 |
st.session_state.analytics_data = get_preclass_analytics(session)
|
|
|
|
|
1308 |
|
1309 |
-
|
|
|
|
|
|
|
|
|
1310 |
|
|
|
1311 |
# Enhanced CSS for better styling and interactivity
|
1312 |
st.markdown("""
|
1313 |
<style>
|
@@ -1497,133 +1534,133 @@ def display_preclass_analytics2(session, course_id):
|
|
1497 |
if 'topic_indices' not in st.session_state:
|
1498 |
st.session_state.topic_indices = list(range(len(analytics["topic_wise_insights"])))
|
1499 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1500 |
|
1501 |
-
|
1502 |
-
|
1503 |
-
|
1504 |
-
|
1505 |
-
|
1506 |
-
# Create clickable header
|
1507 |
-
col1, col2 = st.columns([3, 1])
|
1508 |
-
with col1:
|
1509 |
-
if st.button(
|
1510 |
-
topic["topic"],
|
1511 |
-
key=f"topic_button_{idx}",
|
1512 |
-
use_container_width=True,
|
1513 |
-
type="secondary"
|
1514 |
-
):
|
1515 |
-
st.session_state.expanded_topic = topic_id if st.session_state.expanded_topic != topic_id else None
|
1516 |
-
|
1517 |
-
with col2:
|
1518 |
-
st.markdown(f"""
|
1519 |
-
<div style="text-align: right;">
|
1520 |
-
<span class="topic-struggling-rate">{topic["struggling_percentage"]*100:.1f}% Struggling</span>
|
1521 |
-
</div>
|
1522 |
-
""", unsafe_allow_html=True)
|
1523 |
-
|
1524 |
-
# Show content if topic is expanded
|
1525 |
-
if st.session_state.expanded_topic == topic_id:
|
1526 |
st.markdown(f"""
|
1527 |
-
<div class="
|
1528 |
-
<
|
1529 |
-
|
1530 |
-
|
1531 |
-
</
|
1532 |
-
<
|
1533 |
-
<
|
1534 |
-
|
1535 |
-
</ul>
|
1536 |
</div>
|
1537 |
""", unsafe_allow_html=True)
|
1538 |
-
|
1539 |
|
1540 |
-
|
1541 |
-
|
1542 |
-
|
1543 |
-
|
1544 |
-
st.
|
1545 |
-
<div class="
|
1546 |
-
|
1547 |
-
|
1548 |
-
|
1549 |
-
|
1550 |
-
|
1551 |
-
|
1552 |
-
|
1553 |
-
|
1554 |
-
|
1555 |
-
|
1556 |
-
|
1557 |
-
|
1558 |
-
|
1559 |
-
|
1560 |
-
|
1561 |
-
|
1562 |
-
|
1563 |
-
|
1564 |
-
|
1565 |
-
|
1566 |
-
|
1567 |
-
|
1568 |
-
|
1569 |
-
|
1570 |
-
|
1571 |
-
"Filter by Participation",
|
1572 |
-
["All", "High (>80%)", "Medium (50-80%)", "Low (<50%)"]
|
1573 |
-
)
|
1574 |
-
with col3:
|
1575 |
-
struggling_topic = st.selectbox(
|
1576 |
-
"Filter by Struggling Topic",
|
1577 |
-
["All"] + list(set([topic for student in analytics["student_analytics"]
|
1578 |
-
for topic in student["struggling_topics"]]))
|
1579 |
-
)
|
1580 |
-
# st.markdown('</div>', unsafe_allow_html=True)
|
1581 |
-
|
1582 |
-
# Display student metrics in a grid
|
1583 |
-
st.markdown('<div class="analytics-grid">', unsafe_allow_html=True)
|
1584 |
-
for student in analytics["student_analytics"]:
|
1585 |
-
# Apply filters
|
1586 |
-
if (concept_understanding != "All" and
|
1587 |
-
student["engagement_metrics"]["concept_understanding"].replace("_", " ").title() != concept_understanding):
|
1588 |
-
continue
|
1589 |
-
|
1590 |
-
participation = student["engagement_metrics"]["participation_level"] * 100
|
1591 |
-
if participation_level != "All":
|
1592 |
-
if participation_level == "High (>80%)" and participation <= 80:
|
1593 |
-
continue
|
1594 |
-
elif participation_level == "Medium (50-80%)" and (participation < 50 or participation > 80):
|
1595 |
-
continue
|
1596 |
-
elif participation_level == "Low (<50%)" and participation >= 50:
|
1597 |
continue
|
1598 |
|
1599 |
-
|
1600 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1601 |
|
1602 |
-
|
1603 |
-
|
1604 |
-
|
1605 |
-
|
1606 |
-
</div>
|
1607 |
-
<div class="metrics-grid">
|
1608 |
-
<div class="metric-box">
|
1609 |
-
<div class="label">Participation</div>
|
1610 |
-
<div class="value">{student["engagement_metrics"]["participation_level"]*100:.1f}%</div>
|
1611 |
-
</div>
|
1612 |
-
<div class="metric-box">
|
1613 |
-
<div class="label">Understanding</div>
|
1614 |
-
<div class="value">{student["engagement_metrics"]["concept_understanding"].replace('_', ' ').title()}</div>
|
1615 |
-
</div>
|
1616 |
-
<div class="struggling-topics">
|
1617 |
-
<div class="label">Struggling Topics: </div>
|
1618 |
-
<div class="value">{", ".join(student["struggling_topics"]) if student["struggling_topics"] else "None"}</div>
|
1619 |
</div>
|
1620 |
-
<div class="
|
1621 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1622 |
</div>
|
1623 |
</div>
|
1624 |
-
|
1625 |
-
|
1626 |
-
st.markdown('</div>', unsafe_allow_html=True)
|
1627 |
|
1628 |
def reset_analytics_state():
|
1629 |
"""
|
|
|
1288 |
# return refined_report
|
1289 |
|
1290 |
# Use the 2nd analytice engine (using LLM):
|
1291 |
+
fallback_analytics = {
|
1292 |
+
"topic_insights": [],
|
1293 |
+
"student_insights": [],
|
1294 |
+
"recommended_actions": [
|
1295 |
+
{
|
1296 |
+
"action": "Review analytics generation process",
|
1297 |
+
"priority": "high",
|
1298 |
+
"target_group": "system_administrators",
|
1299 |
+
"reasoning": "Analytics generation failed",
|
1300 |
+
"expected_impact": "Restore analytics functionality"
|
1301 |
+
}
|
1302 |
+
],
|
1303 |
+
"course_health": {
|
1304 |
+
"overall_engagement": 0,
|
1305 |
+
"critical_topics": [],
|
1306 |
+
"class_distribution": {
|
1307 |
+
"high_performers": 0,
|
1308 |
+
"average_performers": 0,
|
1309 |
+
"at_risk": 0
|
1310 |
+
}
|
1311 |
+
},
|
1312 |
+
"intervention_metrics": {
|
1313 |
+
"immediate_attention_needed": [],
|
1314 |
+
"monitoring_required": []
|
1315 |
+
}
|
1316 |
+
}
|
1317 |
analytics_generator = NovaScholarAnalytics()
|
1318 |
analytics2 = analytics_generator.generate_analytics(all_chat_histories, topics)
|
1319 |
# enriched_analytics = analytics_generator._enrich_analytics(analytics2)
|
1320 |
print("Analytics is: ", analytics2)
|
1321 |
+
|
1322 |
+
if analytics2 == fallback_analytics:
|
1323 |
+
return None
|
1324 |
+
else:
|
1325 |
+
return analytics2
|
1326 |
# print(json.dumps(analytics, indent=2))
|
1327 |
|
1328 |
|
|
|
1335 |
# Initialize or get analytics data from session state
|
1336 |
if 'analytics_data' not in st.session_state:
|
1337 |
st.session_state.analytics_data = get_preclass_analytics(session)
|
1338 |
+
if 'topic_indices'not in st.session_state:
|
1339 |
+
st.session_state.topic_indices = None
|
1340 |
|
1341 |
+
if st.session_state.analytics_data:
|
1342 |
+
analytics = st.session_state.analytics_data
|
1343 |
+
else:
|
1344 |
+
st.info("No analytics data found for this session.")
|
1345 |
+
return
|
1346 |
|
1347 |
+
print(analytics)
|
1348 |
# Enhanced CSS for better styling and interactivity
|
1349 |
st.markdown("""
|
1350 |
<style>
|
|
|
1534 |
if 'topic_indices' not in st.session_state:
|
1535 |
st.session_state.topic_indices = list(range(len(analytics["topic_wise_insights"])))
|
1536 |
|
1537 |
+
if st.session_state.topic_indices:
|
1538 |
+
st.markdown('<div class="topic-list">', unsafe_allow_html=True)
|
1539 |
+
for idx in st.session_state.topic_indices:
|
1540 |
+
topic = analytics["topic_wise_insights"][idx]
|
1541 |
+
topic_id = f"topic_{idx}"
|
1542 |
+
|
1543 |
+
# Create clickable header
|
1544 |
+
col1, col2 = st.columns([3, 1])
|
1545 |
+
with col1:
|
1546 |
+
if st.button(
|
1547 |
+
topic["topic"],
|
1548 |
+
key=f"topic_button_{idx}",
|
1549 |
+
use_container_width=True,
|
1550 |
+
type="secondary"
|
1551 |
+
):
|
1552 |
+
st.session_state.expanded_topic = topic_id if st.session_state.expanded_topic != topic_id else None
|
1553 |
+
|
1554 |
+
with col2:
|
1555 |
+
st.markdown(f"""
|
1556 |
+
<div style="text-align: right;">
|
1557 |
+
<span class="topic-struggling-rate">{topic["struggling_percentage"]*100:.1f}% Struggling</span>
|
1558 |
+
</div>
|
1559 |
+
""", unsafe_allow_html=True)
|
1560 |
+
|
1561 |
+
# Show content if topic is expanded
|
1562 |
+
if st.session_state.expanded_topic == topic_id:
|
1563 |
+
st.markdown(f"""
|
1564 |
+
<div class="topic-content">
|
1565 |
+
<div class="section-heading">Key Issues</div>
|
1566 |
+
<ul>
|
1567 |
+
{"".join([f"<li>{issue}</li>" for issue in topic["key_issues"]])}
|
1568 |
+
</ul>
|
1569 |
+
<div class="section-heading">Key Misconceptions</div>
|
1570 |
+
<ul>
|
1571 |
+
{"".join([f"<li>{misc}</li>" for misc in topic["key_misconceptions"]])}
|
1572 |
+
</ul>
|
1573 |
+
</div>
|
1574 |
+
""", unsafe_allow_html=True)
|
1575 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
1576 |
|
1577 |
+
# AI Recommendations Section
|
1578 |
+
st.markdown('<h2 class="section-title">AI-Powered Recommendations</h2>', unsafe_allow_html=True)
|
1579 |
+
st.markdown('<div class="recommendation-grid">', unsafe_allow_html=True)
|
1580 |
+
for idx, rec in enumerate(analytics["ai_recommended_actions"]):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1581 |
st.markdown(f"""
|
1582 |
+
<div class="recommendation-card">
|
1583 |
+
<h4>
|
1584 |
+
<span>Recommendation {idx + 1}</span>
|
1585 |
+
<span class="priority-badge">{rec["priority"]}</span>
|
1586 |
+
</h4>
|
1587 |
+
<p>{rec["action"]}</p>
|
1588 |
+
<p><span class="reason">Reason:</span> {rec["reasoning"]}</p>
|
1589 |
+
<p><span class="reason">Expected Outcome:</span> {rec["expected_outcome"]}</p>
|
|
|
1590 |
</div>
|
1591 |
""", unsafe_allow_html=True)
|
1592 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
1593 |
|
1594 |
+
# Student Analytics Section
|
1595 |
+
st.markdown('<h2 class="section-title">Student Analytics</h2>', unsafe_allow_html=True)
|
1596 |
+
|
1597 |
+
# Filters
|
1598 |
+
with st.container():
|
1599 |
+
# st.markdown('<div class="student-filters">', unsafe_allow_html=True)
|
1600 |
+
col1, col2, col3 = st.columns(3)
|
1601 |
+
with col1:
|
1602 |
+
concept_understanding = st.selectbox(
|
1603 |
+
"Filter by Understanding",
|
1604 |
+
["All", "Strong", "Moderate", "Needs Improvement"]
|
1605 |
+
)
|
1606 |
+
with col2:
|
1607 |
+
participation_level = st.selectbox(
|
1608 |
+
"Filter by Participation",
|
1609 |
+
["All", "High (>80%)", "Medium (50-80%)", "Low (<50%)"]
|
1610 |
+
)
|
1611 |
+
with col3:
|
1612 |
+
struggling_topic = st.selectbox(
|
1613 |
+
"Filter by Struggling Topic",
|
1614 |
+
["All"] + list(set([topic for student in analytics["student_analytics"]
|
1615 |
+
for topic in student["struggling_topics"]]))
|
1616 |
+
)
|
1617 |
+
# st.markdown('</div>', unsafe_allow_html=True)
|
1618 |
+
|
1619 |
+
# Display student metrics in a grid
|
1620 |
+
st.markdown('<div class="analytics-grid">', unsafe_allow_html=True)
|
1621 |
+
for student in analytics["student_analytics"]:
|
1622 |
+
# Apply filters
|
1623 |
+
if (concept_understanding != "All" and
|
1624 |
+
student["engagement_metrics"]["concept_understanding"].replace("_", " ").title() != concept_understanding):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1625 |
continue
|
1626 |
|
1627 |
+
participation = student["engagement_metrics"]["participation_level"] * 100
|
1628 |
+
if participation_level != "All":
|
1629 |
+
if participation_level == "High (>80%)" and participation <= 80:
|
1630 |
+
continue
|
1631 |
+
elif participation_level == "Medium (50-80%)" and (participation < 50 or participation > 80):
|
1632 |
+
continue
|
1633 |
+
elif participation_level == "Low (<50%)" and participation >= 50:
|
1634 |
+
continue
|
1635 |
+
|
1636 |
+
if struggling_topic != "All" and struggling_topic not in student["struggling_topics"]:
|
1637 |
+
continue
|
1638 |
|
1639 |
+
st.markdown(f"""
|
1640 |
+
<div class="student-metrics-card">
|
1641 |
+
<div class="header">
|
1642 |
+
<span class="student-id">Student {student["student_id"][-6:]}</span>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1643 |
</div>
|
1644 |
+
<div class="metrics-grid">
|
1645 |
+
<div class="metric-box">
|
1646 |
+
<div class="label">Participation</div>
|
1647 |
+
<div class="value">{student["engagement_metrics"]["participation_level"]*100:.1f}%</div>
|
1648 |
+
</div>
|
1649 |
+
<div class="metric-box">
|
1650 |
+
<div class="label">Understanding</div>
|
1651 |
+
<div class="value">{student["engagement_metrics"]["concept_understanding"].replace('_', ' ').title()}</div>
|
1652 |
+
</div>
|
1653 |
+
<div class="struggling-topics">
|
1654 |
+
<div class="label">Struggling Topics: </div>
|
1655 |
+
<div class="value">{", ".join(student["struggling_topics"]) if student["struggling_topics"] else "None"}</div>
|
1656 |
+
</div>
|
1657 |
+
<div class="recommendation-text">
|
1658 |
+
{student["personalized_recommendation"]}
|
1659 |
+
</div>
|
1660 |
</div>
|
1661 |
</div>
|
1662 |
+
""", unsafe_allow_html=True)
|
1663 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
|
|
1664 |
|
1665 |
def reset_analytics_state():
|
1666 |
"""
|