Spaces:
Build error
Build error
Harshal Vhatkar
commited on
Commit
·
cca73d9
1
Parent(s):
1586102
add course creation and other new features
Browse files- create_course.py +272 -0
- file_upload_vectorize.py +2 -2
- main.py +334 -58
- pre_class_analytics.py +850 -0
- session_page.py +257 -16
create_course.py
ADDED
@@ -0,0 +1,272 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datetime import datetime, timedelta
|
2 |
+
import os
|
3 |
+
from typing import Dict, List, Any
|
4 |
+
from pymongo import MongoClient
|
5 |
+
import requests
|
6 |
+
import uuid
|
7 |
+
import openai
|
8 |
+
from openai import OpenAI
|
9 |
+
import streamlit as st
|
10 |
+
from bson import ObjectId
|
11 |
+
from dotenv import load_dotenv
|
12 |
+
import json
|
13 |
+
|
14 |
+
load_dotenv()
|
15 |
+
MONGODB_URI = os.getenv("MONGO_URI")
|
16 |
+
PERPLEXITY_API_KEY = os.getenv("PERPLEXITY_KEY")
|
17 |
+
OPENAI_API_KEY = os.getenv("OPENAI_KEY")
|
18 |
+
|
19 |
+
client = MongoClient(MONGODB_URI)
|
20 |
+
db = client['novascholar_db']
|
21 |
+
courses_collection = db['courses']
|
22 |
+
|
23 |
+
def generate_perplexity_response(api_key, course_name):
|
24 |
+
headers = {
|
25 |
+
"accept": "application/json",
|
26 |
+
"content-type": "application/json",
|
27 |
+
"authorization": f"Bearer {api_key}"
|
28 |
+
}
|
29 |
+
|
30 |
+
prompt = f"""
|
31 |
+
You are an expert educational AI assistant specializing in curriculum design and instructional planning. Your task is to generate comprehensive, academically rigorous course structures for undergraduate level education.
|
32 |
+
|
33 |
+
Please generate a detailed course structure for the course {course_name} in JSON format following these specifications:
|
34 |
+
|
35 |
+
1. The course structure should be appropriate for a full semester (14-16 weeks)
|
36 |
+
2. Each module should be designed for 2-4 weeks of instruction
|
37 |
+
3. Follow standard academic practices and nomenclature
|
38 |
+
4. Ensure progressive complexity from foundational to advanced concepts
|
39 |
+
5. The course_title should exactly match the course name provided in the prompt. No additional information should be included in the course_title field.
|
40 |
+
6: Ensure that the property names are enclosed in double quotes (") and followed by a colon (:), and the values are enclosed in double quotes (").
|
41 |
+
7. **DO NOT INCLUDE THE WORD JSON IN THE OUTPUT STRING, DO NOT INCLUDE BACKTICKS (```) IN THE OUTPUT, AND DO NOT INCLUDE ANY OTHER TEXT, OTHER THAN THE ACTUAL JSON RESPONSE. START THE RESPONSE STRING WITH AN OPEN CURLY BRACE {{ AND END WITH A CLOSING CURLY BRACE }}.**
|
42 |
+
|
43 |
+
|
44 |
+
The JSON response should follow this structure:
|
45 |
+
{{
|
46 |
+
"course_title": "string",
|
47 |
+
"course_description": "string",
|
48 |
+
"modules": [
|
49 |
+
{{
|
50 |
+
"module_title": "string",
|
51 |
+
"sub_modules": [
|
52 |
+
{{
|
53 |
+
"title": "string",
|
54 |
+
"topics": [string],
|
55 |
+
}}
|
56 |
+
]
|
57 |
+
}}
|
58 |
+
]
|
59 |
+
}}
|
60 |
+
|
61 |
+
Example response:
|
62 |
+
{{
|
63 |
+
"course_title": "Advanced Natural Language Processing",
|
64 |
+
"course_descriptio": "An advanced course covering modern approaches to NLP using deep learning, with focus on transformer architectures and their applications.",
|
65 |
+
"modules": [
|
66 |
+
{{
|
67 |
+
"module_title": "Foundations of Modern NLP",
|
68 |
+
"sub_modules": [
|
69 |
+
{{
|
70 |
+
"title": "Attention Mechanism",
|
71 |
+
"topics": [
|
72 |
+
"Self-attention",
|
73 |
+
"Multi-head attention",
|
74 |
+
"Positional encoding"
|
75 |
+
]
|
76 |
+
}}
|
77 |
+
]
|
78 |
+
}}
|
79 |
+
]
|
80 |
+
}}
|
81 |
+
"""
|
82 |
+
|
83 |
+
messages = [
|
84 |
+
{
|
85 |
+
"role": "system",
|
86 |
+
"content": (
|
87 |
+
"You are an expert educational AI assistant specializing in course design and curriculum planning. "
|
88 |
+
"Your task is to generate accurate, detailed, and structured educational content for undergraduate-level and post-graduate-level courses. "
|
89 |
+
"Provide detailed and accurate information tailored to the user's prompt."
|
90 |
+
"Ensure that the responses are logical, follow standard academic practices, and include realistic concepts relevant to the course."
|
91 |
+
),
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"role": "user",
|
95 |
+
"content": prompt
|
96 |
+
},
|
97 |
+
]
|
98 |
+
try:
|
99 |
+
client = OpenAI(api_key=api_key, base_url="https://api.perplexity.ai")
|
100 |
+
response = client.chat.completions.create(
|
101 |
+
model="llama-3.1-sonar-small-128k-online",
|
102 |
+
messages=messages
|
103 |
+
)
|
104 |
+
content = response.choices[0].message.content
|
105 |
+
return content
|
106 |
+
except Exception as e:
|
107 |
+
st.error(f"Failed to fetch data from Perplexity API: {e}")
|
108 |
+
return ""
|
109 |
+
|
110 |
+
def get_new_course_id():
|
111 |
+
"""Generate a new course ID by incrementing the last course ID"""
|
112 |
+
last_course = courses_collection.find_one(sort=[("course_id", -1)])
|
113 |
+
if last_course:
|
114 |
+
last_course_id = int(last_course["course_id"][2:])
|
115 |
+
new_course_id = f"CS{last_course_id + 1}"
|
116 |
+
else:
|
117 |
+
new_course_id = "CS101"
|
118 |
+
return new_course_id
|
119 |
+
|
120 |
+
|
121 |
+
def create_course(course_name, start_date, duration_weeks):
|
122 |
+
# Generate course overview
|
123 |
+
# overview_prompt = f"""Generate an overview for the undergraduate course {course_name}
|
124 |
+
# Include all relevant concepts and key topics covered in a typical curriculum.
|
125 |
+
# The response should be concise (300-400 words). Ensure that your response is in a valid JSON format."""
|
126 |
+
|
127 |
+
# overview_prompt2 = f"""Generate an overview for the undergraduate course {course_name}.
|
128 |
+
# The overview should include:
|
129 |
+
# The course title, a detailed course description,
|
130 |
+
# a division of all relevant concepts and key topics into 4-6 logical modules,
|
131 |
+
# capturing the flow and structure of a typical curriculum.
|
132 |
+
# Ensure the response adheres to the following JSON format:
|
133 |
+
# {{
|
134 |
+
# 'overview': 'string',
|
135 |
+
# 'modules': [
|
136 |
+
# {{
|
137 |
+
# 'name': 'string',
|
138 |
+
# 'description': 'string'
|
139 |
+
# }}
|
140 |
+
# ]
|
141 |
+
# }}
|
142 |
+
# overview: A detailed description of the course.
|
143 |
+
# modules: An array of 4-6 objects, each representing a logical module with a name and a brief description
|
144 |
+
# **DO NOT INCLUDE THE WORD JSON IN THE OUTPUT STRING, DO NOT INCLUDE BACKTICKS (```) IN THE OUTPUT, AND DO NOT INCLUDE ANY OTHER TEXT, OTHER THAN THE ACTUAL JSON RESPONSE. START THE RESPONSE STRING WITH AN OPEN CURLY BRACE {{ AND END WITH A CLOSING CURLY BRACE }}"""
|
145 |
+
|
146 |
+
# course_overview = generate_perplexity_response(PERPLEXITY_API_KEY, overview_prompt2)
|
147 |
+
# # print(course_overview)
|
148 |
+
# course_overview_store = course_overview
|
149 |
+
# # print(course_overview_store)
|
150 |
+
# # Generate modules
|
151 |
+
# # modules_prompt = f"Based on this overview: {course_overview}\nCreate 4-6 logical modules for the course, each module should group related concepts and each module may include reference books if applicable"
|
152 |
+
# sub_modules_prompt = f"""Using the provided modules in the overview {course_overview_store}, generate 2-3 submodules for each module.
|
153 |
+
# Each submodule should represent a cohesive subset of the module's topics, logically organized for teaching purposes.
|
154 |
+
# Ensure the response adheres to the following JSON format:
|
155 |
+
# {
|
156 |
+
# 'modules': [
|
157 |
+
# {
|
158 |
+
# 'name': 'string',
|
159 |
+
# 'sub_modules': [
|
160 |
+
# {
|
161 |
+
# 'name': 'string',
|
162 |
+
# 'description': 'string'
|
163 |
+
# }
|
164 |
+
# ]
|
165 |
+
# }
|
166 |
+
# ]
|
167 |
+
# }
|
168 |
+
# modules: An array where each object contains the name of the module and its corresponding sub_modules.
|
169 |
+
# sub_modules: An array of 2-3 objects for each module, each having a name and a brief description."
|
170 |
+
# **DO NOT INCLUDE THE WORD JSON IN THE OUTPUT STRING, DO NOT INCLUDE BACKTICKS (```) IN THE OUTPUT, AND DO NOT INCLUDE ANY OTHER TEXT, OTHER THAN THE ACTUAL JSON RESPONSE. START THE RESPONSE STRING WITH AN OPEN CURLY BRACE {{ AND END WITH A CLOSING CURLY BRACE }}
|
171 |
+
# """
|
172 |
+
# sub_modules = generate_perplexity_response(PERPLEXITY_API_KEY, sub_modules_prompt)
|
173 |
+
|
174 |
+
# # modules_response = generate_perplexity_response(modules_prompt)
|
175 |
+
# print(sub_modules)
|
176 |
+
|
177 |
+
# total_sessions = duration_weeks * sessions_per_week
|
178 |
+
|
179 |
+
course_plan = generate_perplexity_response(PERPLEXITY_API_KEY, course_name)
|
180 |
+
course_plan_json = json.loads(course_plan)
|
181 |
+
|
182 |
+
# Generate sessions for each module
|
183 |
+
all_sessions = []
|
184 |
+
for module in course_plan_json['modules']:
|
185 |
+
for sub_module in module['sub_modules']:
|
186 |
+
for topic in sub_module['topics']:
|
187 |
+
session = create_session(
|
188 |
+
title=topic,
|
189 |
+
date=start_date,
|
190 |
+
module_name=module['module_title']
|
191 |
+
)
|
192 |
+
# print(session)
|
193 |
+
all_sessions.append(session)
|
194 |
+
start_date += timedelta(days=7) # Next session after a week
|
195 |
+
|
196 |
+
# sample_sessions = [
|
197 |
+
# {'session_id': ObjectId('6767d0bbad8316ac358def25'), 'title': 'What is Generative AI?', 'date': datetime(2024, 12, 22, 14, 11, 27, 153899), 'status': 'upcoming', 'created_at': datetime(2024, 12, 22, 8, 41, 31, 504599), 'pre_class': {'resources': [], 'completion_required': True}, 'in_class': {'quiz': [], 'polls': []}, 'post_class': {'assignments': []}},
|
198 |
+
# {'session_id': ObjectId('6767d0bbad8316ac358def26'), 'title': 'History and Evolution of AI', 'date': datetime(2024, 12, 29, 14, 11, 27, 153899), 'status': 'upcoming', 'created_at': datetime(2024, 12, 22, 8, 41, 31, 504599), 'pre_class': {'resources': [], 'completion_required': True}, 'in_class': {'quiz': [], 'polls': []}, 'post_class': {'assignments': []}},
|
199 |
+
# {'session_id': ObjectId('6767d0bbad8316ac358def27'), 'title': 'Types of Generative AI (e.g., GANs, VAEs, LLMs)', 'date': datetime(2025, 1, 5, 14, 11, 27, 153899), 'status': 'upcoming', 'created_at': datetime(2024, 12, 22, 8, 41, 31, 505626), 'pre_class': {'resources': [], 'completion_required': True}, 'in_class': {'quiz': [], 'polls': []}, 'post_class': {'assignments': []}},
|
200 |
+
# {'session_id': ObjectId('6767d0bbad8316ac358def28'), 'title': 'Overview of popular GenAI tools (e.g., ChatGPT, Claude, Google Gemini)', 'date': datetime(2025, 1, 12, 14, 11, 27, 153899), 'status': 'upcoming', 'created_at': datetime(2024, 12, 22, 8, 41, 31, 506559), 'pre_class': {'resources': [], 'completion_required': True}, 'in_class': {'quiz': [], 'polls': []}, 'post_class': {'assignments': []}},
|
201 |
+
# {'session_id': ObjectId('6767d0bbad8316ac358def29'), 'title': 'Frameworks for building GenAI models (e.g., TensorFlow, PyTorch)', 'date': datetime(2025, 1, 19, 14, 11, 27, 153899), 'status': 'upcoming', 'created_at': datetime(2024, 12, 22, 8, 41, 31, 506559), 'pre_class': {'resources': [], 'completion_required': True}, 'in_class': {'quiz': [], 'polls': []}, 'post_class': {'assignments': []}},
|
202 |
+
# {'session_id': ObjectId('6767d0bbad8316ac358def2a'), 'title': 'Integration with other AI technologies', 'date': datetime(2025, 1, 26, 14, 11, 27, 153899), 'status': 'upcoming', 'created_at': datetime(2024, 12, 22, 8, 41, 31, 507612), 'pre_class': {'resources': [], 'completion_required': True}, 'in_class': {'quiz': [], 'polls': []}, 'post_class': {'assignments': []}},
|
203 |
+
# {'session_id': ObjectId('6767d0bbad8316ac358def2b'), 'title': 'Text-to-text models (e.g., GPT-3, BERT)', 'date': datetime(2025, 2, 2, 14, 11, 27, 153899), 'status': 'upcoming', 'created_at': datetime(2024, 12, 22, 8, 41, 31, 508512), 'pre_class': {'resources': [], 'completion_required': True}, 'in_class': {'quiz': [], 'polls': []}, 'post_class': {'assignments': []}},
|
204 |
+
# {'session_id': ObjectId('6767d0bbad8316ac358def2c'), 'title': 'Text generation for content creation and marketing', 'date': datetime(2025, 2, 9, 14, 11, 27, 153899), 'status': 'upcoming', 'created_at': datetime(2024, 12, 22, 8, 41, 31, 508512), 'pre_class': {'resources': [], 'completion_required': True}, 'in_class': {'quiz': [], 'polls': []}, 'post_class': {'assignments': []}},
|
205 |
+
# {'session_id': ObjectId('6767d0bbad8316ac358def2d'), 'title': 'Chatbots and conversational interfaces', 'date': datetime(2025, 2, 16, 14, 11, 27, 153899), 'status': 'upcoming', 'created_at': datetime(2024, 12, 22, 8, 41, 31, 509612), 'pre_class': {'resources': [], 'completion_required': True}, 'in_class': {'quiz': [], 'polls': []}, 'post_class': {'assignments': []}},
|
206 |
+
# {'session_id': ObjectId('6767d0bbad8316ac358def2e'), 'title': 'Generative Adversarial Networks (GANs)', 'date': datetime(2025, 2, 23, 14, 11, 27, 153899), 'status': 'upcoming', 'created_at': datetime(2024, 12, 22, 8, 41, 31, 509612), 'pre_class': {'resources': [], 'completion_required': True}, 'in_class': {'quiz': [], 'polls': []}, 'post_class': {'assignments': []}},
|
207 |
+
# {'session_id': ObjectId('6767d0bbad8316ac358def2f'), 'title': 'Variational Autoencoders (VAEs)', 'date': datetime(2025, 3, 2, 14, 11, 27, 153899), 'status': 'upcoming', 'created_at': datetime(2024, 12, 22, 8, 41, 31, 510612), 'pre_class': {'resources': [], 'completion_required': True}, 'in_class': {'quiz': [], 'polls': []}, 'post_class': {'assignments': []}},
|
208 |
+
# {'session_id': ObjectId('6767d0bbad8316ac358def30'), 'title': 'Applications in art, design, and media', 'date': datetime(2025, 3, 9, 14, 11, 27, 153899), 'status': 'upcoming', 'created_at': datetime(2024, 12, 22, 8, 41, 31, 511497), 'pre_class': {'resources': [], 'completion_required': True}, 'in_class': {'quiz': [], 'polls': []}, 'post_class': {'assignments': []}},
|
209 |
+
# {'session_id': ObjectId('6767d0bbad8316ac358def31'), 'title': 'Understanding prompt design principles', 'date': datetime(2025, 3, 16, 14, 11, 27, 153899), 'status': 'upcoming', 'created_at': datetime(2024, 12, 22, 8, 41, 31, 511497), 'pre_class': {'resources': [], 'completion_required': True}, 'in_class': {'quiz': [], 'polls': []}, 'post_class': {'assignments': []}},
|
210 |
+
# {'session_id': ObjectId('6767d0bbad8316ac358def33'), 'title': 'Advanced techniques for fine-tuning models', 'date': datetime(2025, 3, 30, 14, 11, 27, 153899), 'status': 'upcoming', 'created_at': datetime(2024, 12, 22, 8, 41, 31, 512514), 'pre_class': {'resources': [], 'completion_required': True}, 'in_class': {'quiz': [], 'polls': []}, 'post_class': {'assignments': []}},
|
211 |
+
# {'session_id': ObjectId('6767d0bbad8316ac358def34'), 'title': 'Ethical implications of AI-generated content', 'date': datetime(2025, 4, 6, 14, 11, 27, 153899), 'status': 'upcoming', 'created_at': datetime(2024, 12, 22, 8, 41, 31, 513613), 'pre_class': {'resources': [], 'completion_required': True}, 'in_class': {'quiz': [], 'polls': []}, 'post_class': {'assignments': []}},
|
212 |
+
# {'session_id': ObjectId('6767d0bbad8316ac358def35'), 'title': 'Addressing bias in AI models', 'date': datetime(2025, 4, 13, 14, 11, 27, 153899), 'status': 'upcoming', 'created_at': datetime(2024, 12, 22, 8, 41, 31, 514639), 'pre_class': {'resources': [], 'completion_required': True}, 'in_class': {'quiz': [], 'polls': []}, 'post_class': {'assignments': []}},
|
213 |
+
# {'session_id': ObjectId('6767d0bbad8316ac358def36'), 'title': 'Regulatory frameworks and guidelines', 'date': datetime(2025, 4, 20, 14, 11, 27, 153899), 'status': 'upcoming', 'created_at': datetime(2024, 12, 22, 8, 41, 31, 514639), 'pre_class': {'resources': [], 'completion_required': True}, 'in_class': {'quiz': [], 'polls': []}, 'post_class': {'assignments': []}},
|
214 |
+
# {'session_id': ObjectId('6767d0bbad8316ac358def37'), 'title': 'Case studies from various industries (e.g., marketing, healthcare, finance)', 'date': datetime(2025, 4, 27, 14, 11, 27, 153899), 'status': 'upcoming', 'created_at': datetime(2024, 12, 22, 8, 41, 31, 515610), 'pre_class': {'resources': [], 'completion_required': True}, 'in_class': {'quiz': [], 'polls': []}, 'post_class': {'assignments': []}},
|
215 |
+
# {'session_id': ObjectId('6767d0bbad8316ac358def38'), 'title': 'Success stories and challenges faced by companies using GenAI', 'date': datetime(2025, 5, 4, 14, 11, 27, 153899), 'status': 'upcoming', 'created_at': datetime(2024, 12, 22, 8, 41, 31, 515610), 'pre_class': {'resources': [], 'completion_required': True}, 'in_class': {'quiz': [], 'polls': []}, 'post_class': {'assignments': []}},
|
216 |
+
# {'session_id': ObjectId('6767d0bbad8316ac358def39'), 'title': 'Guidelines for developing a GenAI project', 'date': datetime(2025, 5, 11, 14, 11, 27, 153899), 'status': 'upcoming', 'created_at': datetime(2024, 12, 22, 8, 41, 31, 516614), 'pre_class': {'resources': [], 'completion_required': True}, 'in_class': {'quiz': [], 'polls': []}, 'post_class': {'assignments': []}},
|
217 |
+
# {'session_id': ObjectId('6767d0bbad8316ac358def3a'), 'title': 'Tools and resources for project implementation', 'date': datetime(2025, 5, 18, 14, 11, 27, 153899), 'status': 'upcoming', 'created_at': datetime(2024, 12, 22, 8, 41, 31, 516614), 'pre_class': {'resources': [], 'completion_required': True}, 'in_class': {'quiz': [], 'polls': []}, 'post_class': {'assignments': []}},
|
218 |
+
# {'session_id': ObjectId('6767d0bbad8316ac358def3b'), 'title': 'Best practices for testing and deployment', 'date': datetime(2025, 5, 25, 14, 11, 27, 153899), 'status': 'upcoming', 'created_at': datetime(2024, 12, 22, 8, 41, 31, 517563), 'pre_class': {'resources': [], 'completion_required': True}, 'in_class': {'quiz': [], 'polls': []}, 'post_class': {'assignments': []}}
|
219 |
+
# ]
|
220 |
+
|
221 |
+
# small_sample_sessions = [
|
222 |
+
# {'session_id': ObjectId('6767d0bbad8316ac358def25'), 'title': 'What is Generative AI?', 'date': datetime(2024, 12, 22, 14, 11, 27, 153899), 'status': 'upcoming', 'created_at': datetime(2024, 12, 22, 8, 41, 31, 504599), 'pre_class': {'resources': [], 'completion_required': True}, 'in_class': {'quiz': [], 'polls': []}, 'post_class': {'assignments': []}},
|
223 |
+
# {'session_id': ObjectId('6767d0bbad8316ac358def26'), 'title': 'History and Evolution of AI', 'date': datetime(2024, 12, 29, 14, 11, 27, 153899), 'status': 'upcoming', 'created_at': datetime(2024, 12, 22, 8, 41, 31, 504599), 'pre_class': {'resources': [], 'completion_required': True}, 'in_class': {'quiz': [], 'polls': []}, 'post_class': {'assignments': []}},
|
224 |
+
# ]
|
225 |
+
|
226 |
+
|
227 |
+
# print(all_sessions)
|
228 |
+
|
229 |
+
print("Number of sessions:", len(all_sessions))
|
230 |
+
# Create course document
|
231 |
+
# course_description = course_plan_json['course_description']
|
232 |
+
# course_doc = {
|
233 |
+
# "course_id": get_new_course_id(),
|
234 |
+
# "title": course_name,
|
235 |
+
# "description": course_description,
|
236 |
+
# "faculty": faculty_name,
|
237 |
+
# "faculty_id": faculty_id,
|
238 |
+
# "duration": f"{duration_weeks} weeks",
|
239 |
+
# "created_at": datetime.utcnow(),
|
240 |
+
# "sessions": all_sessions
|
241 |
+
# }
|
242 |
+
# try:
|
243 |
+
# courses_collection.insert_one(course_doc)
|
244 |
+
# except Exception as e:
|
245 |
+
# st.error(f"Failed to insert course data into the database: {e}")
|
246 |
+
|
247 |
+
# print(course_plan)
|
248 |
+
|
249 |
+
def create_session(title: str, date: datetime, module_name: str):
|
250 |
+
"""Create a session document with pre-class, in-class, and post-class components."""
|
251 |
+
return {
|
252 |
+
"session_id": ObjectId(),
|
253 |
+
"title": title,
|
254 |
+
"date": date,
|
255 |
+
"status": "upcoming",
|
256 |
+
"created_at": datetime.utcnow(),
|
257 |
+
"pre_class": {
|
258 |
+
"resources": [],
|
259 |
+
"completion_required": True
|
260 |
+
},
|
261 |
+
"in_class": {
|
262 |
+
"quiz": [],
|
263 |
+
"polls": []
|
264 |
+
},
|
265 |
+
"post_class": {
|
266 |
+
"assignments": []
|
267 |
+
}
|
268 |
+
}
|
269 |
+
|
270 |
+
# Usage example:
|
271 |
+
if __name__ == "__main__":
|
272 |
+
create_course("Introduction to Data Analytics", datetime.now(), 2)
|
file_upload_vectorize.py
CHANGED
@@ -124,12 +124,12 @@ def get_embedding(text):
|
|
124 |
return response.data[0].embedding
|
125 |
|
126 |
def create_vector_store(text, resource_id):
|
127 |
-
resource_object_id = ObjectId(resource_id)
|
128 |
document = Document(text=text)
|
129 |
embedding = get_embedding(text)
|
130 |
|
131 |
vector_data = {
|
132 |
-
"resource_id":
|
133 |
"vector": embedding,
|
134 |
"text": text,
|
135 |
"created_at": datetime.utcnow()
|
|
|
124 |
return response.data[0].embedding
|
125 |
|
126 |
def create_vector_store(text, resource_id):
|
127 |
+
# resource_object_id = ObjectId(resource_id)
|
128 |
document = Document(text=text)
|
129 |
embedding = get_embedding(text)
|
130 |
|
131 |
vector_data = {
|
132 |
+
"resource_id": resource_id,
|
133 |
"vector": embedding,
|
134 |
"text": text,
|
135 |
"created_at": datetime.utcnow()
|
main.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
import streamlit as st
|
2 |
-
from datetime import datetime, date, time
|
3 |
from pathlib import Path
|
4 |
from utils.sample_data import SAMPLE_COURSES, SAMPLE_SESSIONS
|
5 |
from session_page import display_session_content
|
@@ -14,9 +14,14 @@ from werkzeug.security import generate_password_hash, check_password_hash
|
|
14 |
import os
|
15 |
from openai import OpenAI
|
16 |
from dotenv import load_dotenv
|
17 |
-
|
|
|
|
|
18 |
client = OpenAI(api_key=os.getenv("OPENAI_KEY"))
|
|
|
19 |
|
|
|
|
|
20 |
|
21 |
def get_research_papers(query):
|
22 |
"""Get research paper recommendations based on query"""
|
@@ -74,7 +79,12 @@ def init_session_state():
|
|
74 |
st.session_state.selected_course = None
|
75 |
if "show_create_course_form" not in st.session_state:
|
76 |
st.session_state.show_create_course_form = False
|
77 |
-
|
|
|
|
|
|
|
|
|
|
|
78 |
|
79 |
def login_user(username, password, user_type):
|
80 |
"""Login user based on credentials"""
|
@@ -127,7 +137,18 @@ def get_courses(username, user_type):
|
|
127 |
courses = courses_collection2.find(
|
128 |
{"course_id": {"$in": enrolled_course_ids}}
|
129 |
)
|
130 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
return list(courses)
|
132 |
elif user_type == "faculty":
|
133 |
faculty = faculty_collection.find_one({"full_name": username})
|
@@ -497,63 +518,181 @@ def register_page():
|
|
497 |
|
498 |
# Create Course feature
|
499 |
def create_course_form(faculty_name, faculty_id):
|
500 |
-
"""Display form to create a new course"""
|
501 |
st.title("Create New Course")
|
502 |
-
|
503 |
-
if not
|
504 |
-
st.
|
505 |
-
|
506 |
-
|
507 |
-
|
508 |
-
|
509 |
-
|
510 |
-
|
511 |
-
|
512 |
-
|
513 |
-
|
514 |
-
|
515 |
-
|
516 |
-
|
517 |
-
|
518 |
-
|
519 |
-
|
520 |
-
|
521 |
-
|
522 |
-
"
|
523 |
-
|
524 |
-
|
525 |
-
|
526 |
-
|
527 |
-
|
528 |
-
|
529 |
-
|
530 |
-
|
531 |
-
|
532 |
-
|
533 |
-
|
534 |
-
|
535 |
-
|
536 |
-
|
537 |
-
|
538 |
-
|
539 |
-
|
540 |
-
|
541 |
-
|
542 |
-
|
543 |
-
|
544 |
-
|
545 |
-
|
546 |
-
"
|
547 |
-
|
548 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
549 |
}
|
550 |
-
}
|
551 |
-
|
552 |
-
)
|
553 |
|
554 |
-
|
555 |
-
|
556 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
557 |
|
558 |
|
559 |
from research_assistant_dashboard import display_research_assistant_dashboard
|
@@ -561,6 +700,127 @@ from research_assistant_dashboard import display_research_assistant_dashboard
|
|
561 |
from goals2 import display_analyst_dashboard
|
562 |
|
563 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
564 |
def main_dashboard():
|
565 |
if st.session_state.user_type == "research_assistant":
|
566 |
display_research_assistant_dashboard()
|
@@ -581,6 +841,20 @@ def main_dashboard():
|
|
581 |
st.session_state.username, st.session_state.user_type
|
582 |
)
|
583 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
584 |
if st.session_state.user_type == "faculty":
|
585 |
if st.button(
|
586 |
"Create New Course", key="create_course", use_container_width=True
|
@@ -631,6 +905,8 @@ def main_dashboard():
|
|
631 |
create_course_form(st.session_state.username, st.session_state.user_id)
|
632 |
elif st.session_state.get("show_create_session_form"):
|
633 |
create_session_form(selected_course_id)
|
|
|
|
|
634 |
else:
|
635 |
# Main content
|
636 |
if "selected_session" in st.session_state:
|
|
|
1 |
import streamlit as st
|
2 |
+
from datetime import datetime, date, time, timedelta
|
3 |
from pathlib import Path
|
4 |
from utils.sample_data import SAMPLE_COURSES, SAMPLE_SESSIONS
|
5 |
from session_page import display_session_content
|
|
|
14 |
import os
|
15 |
from openai import OpenAI
|
16 |
from dotenv import load_dotenv
|
17 |
+
from create_course import create_course, courses_collection, generate_perplexity_response, PERPLEXITY_API_KEY
|
18 |
+
import json
|
19 |
+
from bson import ObjectId
|
20 |
client = OpenAI(api_key=os.getenv("OPENAI_KEY"))
|
21 |
+
from dotenv import load_dotenv
|
22 |
|
23 |
+
load_dotenv()
|
24 |
+
# PERPLEXITY_API_KEY = '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'
|
25 |
|
26 |
def get_research_papers(query):
|
27 |
"""Get research paper recommendations based on query"""
|
|
|
79 |
st.session_state.selected_course = None
|
80 |
if "show_create_course_form" not in st.session_state:
|
81 |
st.session_state.show_create_course_form = False
|
82 |
+
if "show_create_session_form" not in st.session_state:
|
83 |
+
st.session_state.show_create_session_form = False
|
84 |
+
if "show_enroll_course_page" not in st.session_state:
|
85 |
+
st.session_state.show_enroll_course_page = False
|
86 |
+
if "course_to_enroll" not in st.session_state:
|
87 |
+
st.session_state.course_to_enroll = None
|
88 |
|
89 |
def login_user(username, password, user_type):
|
90 |
"""Login user based on credentials"""
|
|
|
137 |
courses = courses_collection2.find(
|
138 |
{"course_id": {"$in": enrolled_course_ids}}
|
139 |
)
|
140 |
+
# courses += courses_collection2.find(
|
141 |
+
# {"course_id": {"$in": enrolled_course_ids}}
|
142 |
+
# )
|
143 |
+
# # course_titles = [course['title'] for course in courses]
|
144 |
+
# return list(courses)
|
145 |
+
# courses_cursor1 = courses_collection.find(
|
146 |
+
# {"course_id": {"$in": enrolled_course_ids}}
|
147 |
+
# )
|
148 |
+
# courses_cursor2 = courses_collection2.find(
|
149 |
+
# {"course_id": {"$in": enrolled_course_ids}}
|
150 |
+
# )
|
151 |
+
# courses = list(courses_cursor1) + list(courses_cursor2)
|
152 |
return list(courses)
|
153 |
elif user_type == "faculty":
|
154 |
faculty = faculty_collection.find_one({"full_name": username})
|
|
|
518 |
|
519 |
# Create Course feature
|
520 |
def create_course_form(faculty_name, faculty_id):
|
521 |
+
"""Display enhanced form to create a new course with AI-generated content"""
|
522 |
st.title("Create New Course")
|
523 |
+
|
524 |
+
if 'course_plan' not in st.session_state:
|
525 |
+
st.session_state.course_plan = None
|
526 |
+
if 'edit_mode' not in st.session_state:
|
527 |
+
st.session_state.edit_mode = False
|
528 |
+
|
529 |
+
# Initial Course Creation Form
|
530 |
+
if not st.session_state.course_plan:
|
531 |
+
with st.form("initial_course_form"):
|
532 |
+
col1, col2 = st.columns(2)
|
533 |
+
with col1:
|
534 |
+
course_name = st.text_input("Course Name", placeholder="e.g., Introduction to Computer Science")
|
535 |
+
faculty_info = st.text_input("Faculty", value=faculty_name, disabled=True)
|
536 |
+
with col2:
|
537 |
+
duration_weeks = st.number_input("Duration (weeks)", min_value=1, max_value=16, value=12)
|
538 |
+
start_date = st.date_input("Start Date")
|
539 |
+
|
540 |
+
generate_button = st.form_submit_button("Generate Course Structure", use_container_width=True)
|
541 |
+
|
542 |
+
if generate_button and course_name:
|
543 |
+
with st.spinner("Generating course structure..."):
|
544 |
+
try:
|
545 |
+
course_plan = generate_perplexity_response(PERPLEXITY_API_KEY, course_name)
|
546 |
+
# print(course_plan)
|
547 |
+
st.session_state.course_plan = json.loads(course_plan)
|
548 |
+
st.session_state.start_date = start_date
|
549 |
+
st.session_state.duration_weeks = duration_weeks
|
550 |
+
st.rerun()
|
551 |
+
except Exception as e:
|
552 |
+
st.error(f"Error generating course structure: {e}")
|
553 |
+
|
554 |
+
# Display and Edit Generated Course Content
|
555 |
+
if st.session_state.course_plan:
|
556 |
+
with st.expander("Course Overview", expanded=True):
|
557 |
+
if not st.session_state.edit_mode:
|
558 |
+
st.subheader(st.session_state.course_plan['course_title'])
|
559 |
+
st.write(st.session_state.course_plan['course_description'])
|
560 |
+
edit_button = st.button("Edit Course Details", use_container_width=True)
|
561 |
+
if edit_button:
|
562 |
+
st.session_state.edit_mode = True
|
563 |
+
st.rerun()
|
564 |
+
else:
|
565 |
+
with st.form("edit_course_details"):
|
566 |
+
st.session_state.course_plan['course_title'] = st.text_input(
|
567 |
+
"Course Title",
|
568 |
+
value=st.session_state.course_plan['course_title']
|
569 |
+
)
|
570 |
+
st.session_state.course_plan['course_description'] = st.text_area(
|
571 |
+
"Course Description",
|
572 |
+
value=st.session_state.course_plan['course_description']
|
573 |
+
)
|
574 |
+
if st.form_submit_button("Save Course Details"):
|
575 |
+
st.session_state.edit_mode = False
|
576 |
+
st.rerun()
|
577 |
+
|
578 |
+
# Display Modules and Sessions
|
579 |
+
st.subheader("Course Modules and Sessions")
|
580 |
+
|
581 |
+
start_date = st.session_state.start_date
|
582 |
+
current_date = start_date
|
583 |
+
|
584 |
+
all_sessions = []
|
585 |
+
for module_idx, module in enumerate(st.session_state.course_plan['modules']):
|
586 |
+
with st.expander(f"📚 Module {module_idx + 1}: {module['module_title']}", expanded=True):
|
587 |
+
# Edit module title
|
588 |
+
new_module_title = st.text_input(
|
589 |
+
f"Module {module_idx + 1} Title",
|
590 |
+
value=module['module_title'],
|
591 |
+
key=f"module_{module_idx}"
|
592 |
+
)
|
593 |
+
module['module_title'] = new_module_title
|
594 |
+
|
595 |
+
for sub_idx, sub_module in enumerate(module['sub_modules']):
|
596 |
+
st.markdown(f"### 📖 {sub_module['title']}")
|
597 |
+
|
598 |
+
# Create sessions for each topic
|
599 |
+
for topic_idx, topic in enumerate(sub_module['topics']):
|
600 |
+
session_key = f"session_{module_idx}_{sub_idx}_{topic_idx}"
|
601 |
+
|
602 |
+
with st.container():
|
603 |
+
col1, col2, col3 = st.columns([3, 2, 1])
|
604 |
+
with col1:
|
605 |
+
new_topic = st.text_input(
|
606 |
+
"Topic",
|
607 |
+
value=topic,
|
608 |
+
key=f"{session_key}_topic"
|
609 |
+
)
|
610 |
+
sub_module['topics'][topic_idx] = new_topic
|
611 |
+
|
612 |
+
with col2:
|
613 |
+
session_date = st.date_input(
|
614 |
+
"Session Date",
|
615 |
+
value=current_date,
|
616 |
+
key=f"{session_key}_date"
|
617 |
+
)
|
618 |
+
|
619 |
+
with col3:
|
620 |
+
session_status = st.selectbox(
|
621 |
+
"Status",
|
622 |
+
options=["upcoming", "in-progress", "completed"],
|
623 |
+
key=f"{session_key}_status"
|
624 |
+
)
|
625 |
+
|
626 |
+
# Create session object
|
627 |
+
session = {
|
628 |
+
"session_id": str(ObjectId()),
|
629 |
+
"title": new_topic,
|
630 |
+
"date": datetime.combine(session_date, datetime.min.time()),
|
631 |
+
"status": session_status,
|
632 |
+
"module_name": module['module_title'],
|
633 |
+
"created_at": datetime.utcnow(),
|
634 |
+
"pre_class": {
|
635 |
+
"resources": [],
|
636 |
+
"completion_required": True
|
637 |
+
},
|
638 |
+
"in_class": {
|
639 |
+
"quiz": [],
|
640 |
+
"polls": []
|
641 |
+
},
|
642 |
+
"post_class": {
|
643 |
+
"assignments": []
|
644 |
+
}
|
645 |
+
}
|
646 |
+
all_sessions.append(session)
|
647 |
+
current_date = session_date + timedelta(days=7)
|
648 |
+
|
649 |
+
new_course_id = get_new_course_id()
|
650 |
+
course_title = st.session_state.course_plan['course_title']
|
651 |
+
# Final Save Button
|
652 |
+
if st.button("Save Course", type="primary", use_container_width=True):
|
653 |
+
try:
|
654 |
+
course_doc = {
|
655 |
+
"course_id": new_course_id,
|
656 |
+
"title": course_title,
|
657 |
+
"description": st.session_state.course_plan['course_description'],
|
658 |
+
"faculty": faculty_name,
|
659 |
+
"faculty_id": faculty_id,
|
660 |
+
"duration": f"{st.session_state.duration_weeks} weeks",
|
661 |
+
"start_date": datetime.combine(st.session_state.start_date, datetime.min.time()),
|
662 |
+
"created_at": datetime.utcnow(),
|
663 |
+
"sessions": all_sessions
|
664 |
+
}
|
665 |
+
|
666 |
+
# Insert into database
|
667 |
+
courses_collection.insert_one(course_doc)
|
668 |
+
|
669 |
+
st.success("Course successfully created!")
|
670 |
+
|
671 |
+
# Update faculty collection
|
672 |
+
faculty_collection.update_one(
|
673 |
+
{"_id": st.session_state.user_id},
|
674 |
+
{
|
675 |
+
"$push": {
|
676 |
+
"courses_taught": {
|
677 |
+
"course_id": new_course_id,
|
678 |
+
"title": course_title,
|
679 |
+
}
|
680 |
}
|
681 |
+
},
|
682 |
+
)
|
|
|
683 |
|
684 |
+
# Clear session state
|
685 |
+
st.session_state.course_plan = None
|
686 |
+
st.session_state.edit_mode = False
|
687 |
+
|
688 |
+
# Optional: Add a button to view the created course
|
689 |
+
if st.button("View Course"):
|
690 |
+
# Add navigation logic here
|
691 |
+
pass
|
692 |
+
|
693 |
+
except Exception as e:
|
694 |
+
st.error(f"Error saving course: {e}")
|
695 |
+
|
696 |
|
697 |
|
698 |
from research_assistant_dashboard import display_research_assistant_dashboard
|
|
|
700 |
from goals2 import display_analyst_dashboard
|
701 |
|
702 |
|
703 |
+
def enroll_in_course(course_id, course_title, student):
|
704 |
+
"""Enroll a student in a course"""
|
705 |
+
if student:
|
706 |
+
courses = student.get("enrolled_courses", [])
|
707 |
+
if course_id not in [course["course_id"] for course in courses]:
|
708 |
+
course = courses_collection.find_one({"course_id": course_id})
|
709 |
+
if course:
|
710 |
+
courses.append(
|
711 |
+
{
|
712 |
+
"course_id": course["course_id"],
|
713 |
+
"title": course["title"],
|
714 |
+
}
|
715 |
+
)
|
716 |
+
students_collection.update_one(
|
717 |
+
{"_id": st.session_state.user_id},
|
718 |
+
{"$set": {"enrolled_courses": courses}},
|
719 |
+
)
|
720 |
+
st.success(f"Enrolled in course {course_title}")
|
721 |
+
else:
|
722 |
+
st.error("Course not found")
|
723 |
+
else:
|
724 |
+
st.warning("Already enrolled in this course")
|
725 |
+
|
726 |
+
# def enroll_in_course_page(course_id):
|
727 |
+
# """Enroll a student in a course"""
|
728 |
+
# student = students_collection.find_one({"_id": st.session_state.user_id})
|
729 |
+
# course_title = courses_collection.find_one({"course_id": course_id})["title"]
|
730 |
+
|
731 |
+
# course = courses_collection.find_one({"course_id": course_id})
|
732 |
+
# if course:
|
733 |
+
# st.title(course["title"])
|
734 |
+
# st.subheader("Course Description:")
|
735 |
+
# st.write(course["description"])
|
736 |
+
# st.write(f"Faculty: {course['faculty']}")
|
737 |
+
# st.write(f"Duration: {course['duration']}")
|
738 |
+
|
739 |
+
# st.title("Course Sessions")
|
740 |
+
# for session in course["sessions"]:
|
741 |
+
# st.write(f"Session: {session['title']}")
|
742 |
+
# st.write(f"Date: {session['date']}")
|
743 |
+
# st.write(f"Status: {session['status']}")
|
744 |
+
# st.write("----")
|
745 |
+
# else:
|
746 |
+
# st.error("Course not found")
|
747 |
+
|
748 |
+
# enroll_button = st.button("Enroll in Course", key="enroll_button", use_container_width=True)
|
749 |
+
# if enroll_button:
|
750 |
+
# enroll_in_course(course_id, course_title, student)
|
751 |
+
def enroll_in_course_page(course_id):
|
752 |
+
"""Display an aesthetically pleasing course enrollment page"""
|
753 |
+
student = students_collection.find_one({"_id": st.session_state.user_id})
|
754 |
+
course = courses_collection.find_one({"course_id": course_id})
|
755 |
+
|
756 |
+
if not course:
|
757 |
+
st.error("Course not found")
|
758 |
+
return
|
759 |
+
|
760 |
+
# Create two columns for layout
|
761 |
+
col1, col2 = st.columns([2, 1])
|
762 |
+
|
763 |
+
with col1:
|
764 |
+
# Course header section
|
765 |
+
st.title(course["title"])
|
766 |
+
st.markdown(f"*{course['description']}*")
|
767 |
+
|
768 |
+
# Course details in an expander
|
769 |
+
with st.expander("Course Details", expanded=True):
|
770 |
+
st.markdown(f"👨🏫 **Faculty:** {course['faculty']}")
|
771 |
+
st.markdown(f"⏱️ **Duration:** {course['duration']}")
|
772 |
+
|
773 |
+
# Sessions in a clean card-like format
|
774 |
+
st.subheader("📚 Course Sessions")
|
775 |
+
for idx, session in enumerate(course["sessions"], 1):
|
776 |
+
with st.container():
|
777 |
+
st.markdown(f"""
|
778 |
+
---
|
779 |
+
### Session {idx}: {session['title']}
|
780 |
+
🗓️ **Date:** {session['date']}
|
781 |
+
📌 **Status:** {session['status']}
|
782 |
+
""")
|
783 |
+
|
784 |
+
with col2:
|
785 |
+
with st.container():
|
786 |
+
st.markdown("### Ready to Learn?")
|
787 |
+
st.markdown("Click below to enroll in this course")
|
788 |
+
|
789 |
+
# Check if already enrolled
|
790 |
+
courses = student.get("enrolled_courses", [])
|
791 |
+
is_enrolled = course_id in [c["course_id"] for c in courses]
|
792 |
+
|
793 |
+
if is_enrolled:
|
794 |
+
st.info("✅ You are already enrolled in this course")
|
795 |
+
else:
|
796 |
+
enroll_button = st.button(
|
797 |
+
"🎓 Enroll Now",
|
798 |
+
key="enroll_button",
|
799 |
+
use_container_width=True
|
800 |
+
)
|
801 |
+
if enroll_button:
|
802 |
+
enroll_in_course(course_id, course["title"], student)
|
803 |
+
|
804 |
+
def show_available_courses(username, user_type, user_id):
|
805 |
+
"""Display available courses for enrollment"""
|
806 |
+
st.title("Available Courses")
|
807 |
+
|
808 |
+
courses = list(courses_collection2.find({}, {"course_id": 1, "title": 1}))
|
809 |
+
course_options = [
|
810 |
+
f"{course['title']} ({course['course_id']})" for course in courses
|
811 |
+
]
|
812 |
+
|
813 |
+
selected_course = st.selectbox("Select a Course to Enroll", course_options)
|
814 |
+
# if selected_courses:
|
815 |
+
# for course in selected_courses:
|
816 |
+
# course_id = course.split("(")[-1][:-1]
|
817 |
+
# course_title = course.split(" (")[0]
|
818 |
+
# enroll_in_course(course_id, course_title, user_id)
|
819 |
+
# st.success("Courses enrolled successfully!")
|
820 |
+
if selected_course:
|
821 |
+
course_id = selected_course.split("(")[-1][:-1]
|
822 |
+
enroll_in_course_page(course_id)
|
823 |
+
|
824 |
def main_dashboard():
|
825 |
if st.session_state.user_type == "research_assistant":
|
826 |
display_research_assistant_dashboard()
|
|
|
841 |
st.session_state.username, st.session_state.user_type
|
842 |
)
|
843 |
|
844 |
+
# Enroll in Courses
|
845 |
+
if st.session_state.user_type == "student":
|
846 |
+
if st.button(
|
847 |
+
"Enroll in a New Course", key="enroll_course", use_container_width=True
|
848 |
+
):
|
849 |
+
st.session_state.show_enroll_course_page = True
|
850 |
+
|
851 |
+
# if st.session_state.show_enroll_course_form:
|
852 |
+
# courses = list(courses_collection.find({}, {"course_id": 1, "title": 1}))
|
853 |
+
# courses += list(courses_collection2.find({}, {"course_id": 1, "title": 1}))
|
854 |
+
# course_options = [f"{course['title']} ({course['course_id']})" for course in courses]
|
855 |
+
# course_to_enroll = st.selectbox("Available Courses", course_options)
|
856 |
+
# st.session_state.course_to_enroll = course_to_enroll
|
857 |
+
|
858 |
if st.session_state.user_type == "faculty":
|
859 |
if st.button(
|
860 |
"Create New Course", key="create_course", use_container_width=True
|
|
|
905 |
create_course_form(st.session_state.username, st.session_state.user_id)
|
906 |
elif st.session_state.get("show_create_session_form"):
|
907 |
create_session_form(selected_course_id)
|
908 |
+
elif st.session_state.get("show_enroll_course_page"):
|
909 |
+
show_available_courses(st.session_state.username, st.session_state.user_type, st.session_state.user_id)
|
910 |
else:
|
911 |
# Main content
|
912 |
if "selected_session" in st.session_state:
|
pre_class_analytics.py
ADDED
@@ -0,0 +1,850 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
from bson import ObjectId
|
3 |
+
from pymongo import MongoClient
|
4 |
+
import pandas as pd
|
5 |
+
import numpy as np
|
6 |
+
from datetime import datetime
|
7 |
+
from dotenv import load_dotenv
|
8 |
+
import os
|
9 |
+
from typing import List, Dict, Any
|
10 |
+
from transformers import pipeline
|
11 |
+
from textstat import flesch_reading_ease
|
12 |
+
from collections import Counter
|
13 |
+
import logging
|
14 |
+
import spacy
|
15 |
+
import json
|
16 |
+
|
17 |
+
# Load chat histories from JSON file
|
18 |
+
all_chat_histories = []
|
19 |
+
with open(r'D:\ML_Projects\CSR Project\NOVAScholarProject\NovaScholar\all_chat_histories2.json', 'r') as file:
|
20 |
+
all_chat_histories = json.load(file)
|
21 |
+
|
22 |
+
load_dotenv()
|
23 |
+
MONGO_URI = os.getenv("MONGO_URI")
|
24 |
+
client = MongoClient(MONGO_URI)
|
25 |
+
db = client['novascholar_db']
|
26 |
+
|
27 |
+
chat_history_collection = db['chat_history']
|
28 |
+
|
29 |
+
# def get_chat_history(user_id, session_id):
|
30 |
+
# query = {
|
31 |
+
# "user_id": ObjectId(user_id),
|
32 |
+
# "session_id": session_id,
|
33 |
+
# "timestamp": {"$lte": datetime.utcnow()}
|
34 |
+
# }
|
35 |
+
# result = chat_history_collection.find(query)
|
36 |
+
# return list(result)
|
37 |
+
|
38 |
+
# if __name__ == "__main__":
|
39 |
+
# user_ids = ["6738b70cc97dffb641c7d158", "6738b7b33f648a9224f7aa69"]
|
40 |
+
# session_ids = ["S104"]
|
41 |
+
# for user_id in user_ids:
|
42 |
+
# for session_id in session_ids:
|
43 |
+
# result = get_chat_history(user_id, session_id)
|
44 |
+
# print(result)
|
45 |
+
|
46 |
+
# Configure logging
|
47 |
+
logging.basicConfig(level=logging.INFO)
|
48 |
+
logger = logging.getLogger(__name__)
|
49 |
+
|
50 |
+
class NovaScholarAnalytics:
|
51 |
+
def __init__(self):
|
52 |
+
# Initialize NLP components
|
53 |
+
self.nlp = spacy.load("en_core_web_sm")
|
54 |
+
self.sentiment_analyzer = pipeline("sentiment-analysis", model="finiteautomata/bertweet-base-sentiment-analysis", top_k=None)
|
55 |
+
|
56 |
+
# Define question words for detecting questions
|
57 |
+
self.question_words = {"what", "why", "how", "when", "where", "which", "who", "whose", "whom"}
|
58 |
+
|
59 |
+
# Define question categories
|
60 |
+
self.question_categories = {
|
61 |
+
'conceptual': {'what', 'define', 'describe', 'explain'},
|
62 |
+
'procedural': {'how', 'steps', 'procedure', 'process'},
|
63 |
+
'reasoning': {'why', 'reason', 'cause', 'effect'},
|
64 |
+
'clarification': {'clarify', 'mean', 'difference', 'between'}
|
65 |
+
}
|
66 |
+
|
67 |
+
def _categorize_questions(self, questions_df: pd.DataFrame) -> Dict[str, int]:
|
68 |
+
"""
|
69 |
+
Categorize questions into different types based on their content.
|
70 |
+
|
71 |
+
Args:
|
72 |
+
questions_df: DataFrame containing questions
|
73 |
+
|
74 |
+
Returns:
|
75 |
+
Dictionary with question categories and their counts
|
76 |
+
"""
|
77 |
+
categories_count = {
|
78 |
+
'conceptual': 0,
|
79 |
+
'procedural': 0,
|
80 |
+
'reasoning': 0,
|
81 |
+
'clarification': 0,
|
82 |
+
'other': 0
|
83 |
+
}
|
84 |
+
|
85 |
+
for _, row in questions_df.iterrows():
|
86 |
+
prompt_lower = row['prompt'].lower()
|
87 |
+
categorized = False
|
88 |
+
|
89 |
+
for category, keywords in self.question_categories.items():
|
90 |
+
if any(keyword in prompt_lower for keyword in keywords):
|
91 |
+
categories_count[category] += 1
|
92 |
+
categorized = True
|
93 |
+
break
|
94 |
+
|
95 |
+
if not categorized:
|
96 |
+
categories_count['other'] += 1
|
97 |
+
|
98 |
+
return categories_count
|
99 |
+
|
100 |
+
|
101 |
+
def _identify_frustration(self, df: pd.DataFrame) -> List[str]:
|
102 |
+
"""
|
103 |
+
Identify signs of frustration in student messages.
|
104 |
+
|
105 |
+
Args:
|
106 |
+
df: DataFrame containing messages
|
107 |
+
|
108 |
+
Returns:
|
109 |
+
List of topics/areas where frustration was detected
|
110 |
+
"""
|
111 |
+
frustration_indicators = [
|
112 |
+
"don't understand", "confused", "difficult", "hard to",
|
113 |
+
"not clear", "stuck", "help", "can't figure"
|
114 |
+
]
|
115 |
+
|
116 |
+
frustrated_messages = df[
|
117 |
+
df['prompt'].str.lower().str.contains('|'.join(frustration_indicators), na=False)
|
118 |
+
]
|
119 |
+
|
120 |
+
if len(frustrated_messages) == 0:
|
121 |
+
return []
|
122 |
+
|
123 |
+
# Extract topics from frustrated messages
|
124 |
+
frustrated_topics = self._extract_topics(frustrated_messages)
|
125 |
+
return list(set(frustrated_topics)) # Unique topic
|
126 |
+
|
127 |
+
def _calculate_resolution_times(self, df: pd.DataFrame) -> Dict[str, float]:
|
128 |
+
"""
|
129 |
+
Calculate average time taken to resolve questions for different topics.
|
130 |
+
|
131 |
+
Args:
|
132 |
+
df: DataFrame containing messages
|
133 |
+
|
134 |
+
Returns:
|
135 |
+
Dictionary with topics and their average resolution times in minutes
|
136 |
+
"""
|
137 |
+
resolution_times = {}
|
138 |
+
|
139 |
+
# Group messages by topic
|
140 |
+
topics = self._extract_topics(df)
|
141 |
+
for topic in set(topics):
|
142 |
+
escaped_topic = re.escape(topic)
|
143 |
+
topic_msgs = df[df['prompt'].str.contains(escaped_topic, case=False)]
|
144 |
+
if len(topic_msgs) >= 2:
|
145 |
+
# Calculate time difference between first and last message
|
146 |
+
start_time = pd.to_datetime(topic_msgs['timestamp'].iloc[0])
|
147 |
+
end_time = pd.to_datetime(topic_msgs['timestamp'].iloc[-1])
|
148 |
+
duration = (end_time - start_time).total_seconds() / 60 # Convert to minutes
|
149 |
+
resolution_times[topic] = duration
|
150 |
+
|
151 |
+
return resolution_times
|
152 |
+
|
153 |
+
def _calculate_completion_rates(self, df: pd.DataFrame) -> Dict[str, float]:
|
154 |
+
"""
|
155 |
+
Calculate completion rates for different topics.
|
156 |
+
|
157 |
+
Args:
|
158 |
+
df: DataFrame containing messages
|
159 |
+
|
160 |
+
Returns:
|
161 |
+
Dictionary with topics and their completion rates
|
162 |
+
"""
|
163 |
+
completion_rates = {}
|
164 |
+
topics = self._extract_topics(df)
|
165 |
+
|
166 |
+
for topic in set(topics):
|
167 |
+
escaped_topic = re.escape(topic)
|
168 |
+
topic_msgs = df[df['prompt'].str.contains(escaped_topic, case=False)]
|
169 |
+
if len(topic_msgs) > 0:
|
170 |
+
# Consider a topic completed if there are no frustrated messages in the last 2 messages
|
171 |
+
last_msgs = topic_msgs.tail(2)
|
172 |
+
frustrated = self._identify_frustration(last_msgs)
|
173 |
+
completion_rates[topic] = 0.0 if frustrated else 1.0
|
174 |
+
|
175 |
+
return completion_rates
|
176 |
+
|
177 |
+
def _analyze_time_distribution(self, df: pd.DataFrame) -> Dict[str, Dict[str, float]]:
|
178 |
+
"""
|
179 |
+
Analyze time spent on different topics.
|
180 |
+
|
181 |
+
Args:
|
182 |
+
df: DataFrame containing messages
|
183 |
+
|
184 |
+
Returns:
|
185 |
+
Dictionary with time distribution statistics per topic
|
186 |
+
"""
|
187 |
+
time_stats = {}
|
188 |
+
topics = self._extract_topics(df)
|
189 |
+
|
190 |
+
for topic in set(topics):
|
191 |
+
escaped_topic = re.escape(topic)
|
192 |
+
topic_msgs = df[df['prompt'].str.contains(escaped_topic, case=False)]
|
193 |
+
if len(topic_msgs) >= 2:
|
194 |
+
times = pd.to_datetime(topic_msgs['timestamp'])
|
195 |
+
duration = (times.max() - times.min()).total_seconds() / 60
|
196 |
+
|
197 |
+
time_stats[topic] = {
|
198 |
+
'total_minutes': duration,
|
199 |
+
'avg_minutes_per_message': duration / len(topic_msgs),
|
200 |
+
'message_count': len(topic_msgs)
|
201 |
+
}
|
202 |
+
|
203 |
+
return time_stats
|
204 |
+
|
205 |
+
def _identify_coverage_gaps(self, df: pd.DataFrame) -> List[str]:
|
206 |
+
"""
|
207 |
+
Identify topics with potential coverage gaps.
|
208 |
+
|
209 |
+
Args:
|
210 |
+
df: DataFrame containing messages
|
211 |
+
|
212 |
+
Returns:
|
213 |
+
List of topics with coverage gaps
|
214 |
+
"""
|
215 |
+
gaps = []
|
216 |
+
topics = self._extract_topics(df)
|
217 |
+
topic_stats = self._analyze_time_distribution(df)
|
218 |
+
|
219 |
+
for topic in set(topics):
|
220 |
+
if topic in topic_stats:
|
221 |
+
stats = topic_stats[topic]
|
222 |
+
# Flag topics with very short interaction times or few messages
|
223 |
+
if stats['total_minutes'] < 5 or stats['message_count'] < 3:
|
224 |
+
gaps.append(topic)
|
225 |
+
|
226 |
+
return gaps
|
227 |
+
|
228 |
+
def _calculate_student_metrics(self, df: pd.DataFrame) -> Dict[str, Dict[str, float]]:
|
229 |
+
"""
|
230 |
+
Calculate various metrics for each student.
|
231 |
+
|
232 |
+
Args:
|
233 |
+
df: DataFrame containing messages
|
234 |
+
|
235 |
+
Returns:
|
236 |
+
Dictionary with student metrics
|
237 |
+
"""
|
238 |
+
student_metrics = {}
|
239 |
+
|
240 |
+
for user_id in df['user_id'].unique():
|
241 |
+
user_msgs = df[df['user_id'] == user_id]
|
242 |
+
|
243 |
+
metrics = {
|
244 |
+
'message_count': len(user_msgs),
|
245 |
+
'question_count': len(user_msgs[user_msgs['prompt'].str.contains('|'.join(self.question_words), case=False)]),
|
246 |
+
'avg_response_length': user_msgs['response'].str.len().mean(),
|
247 |
+
'unique_topics': len(set(self._extract_topics(user_msgs))),
|
248 |
+
'frustration_count': len(self._identify_frustration(user_msgs))
|
249 |
+
}
|
250 |
+
|
251 |
+
student_metrics[user_id] = metrics
|
252 |
+
|
253 |
+
return student_metrics
|
254 |
+
|
255 |
+
def _determine_student_cluster(self, metrics: Dict[str, float]) -> str:
|
256 |
+
"""
|
257 |
+
Determine which cluster a student belongs to based on their metrics.
|
258 |
+
|
259 |
+
Args:
|
260 |
+
metrics: Dictionary containing student metrics
|
261 |
+
|
262 |
+
Returns:
|
263 |
+
Cluster label ('confident', 'engaged', or 'struggling')
|
264 |
+
"""
|
265 |
+
# Simple rule-based clustering
|
266 |
+
if metrics['frustration_count'] > 2 or metrics['question_count'] / metrics['message_count'] > 0.7:
|
267 |
+
return 'struggling'
|
268 |
+
elif metrics['message_count'] > 10 and metrics['unique_topics'] > 3:
|
269 |
+
return 'engaged'
|
270 |
+
else:
|
271 |
+
return 'confident'
|
272 |
+
|
273 |
+
def _identify_abandon_points(self, df: pd.DataFrame) -> List[Dict[str, Any]]:
|
274 |
+
"""
|
275 |
+
Identify points where students abandoned topics.
|
276 |
+
|
277 |
+
Args:
|
278 |
+
df: DataFrame containing messages
|
279 |
+
|
280 |
+
Returns:
|
281 |
+
List of dictionaries containing abandon point information
|
282 |
+
"""
|
283 |
+
abandon_points = []
|
284 |
+
topics = self._extract_topics(df)
|
285 |
+
|
286 |
+
for topic in set(topics):
|
287 |
+
escaped_topic = re.escape(topic)
|
288 |
+
topic_msgs = df[df['prompt'].str.contains(escaped_topic, case=False)]
|
289 |
+
if len(topic_msgs) >= 2:
|
290 |
+
# Check for large time gaps between messages
|
291 |
+
times = pd.to_datetime(topic_msgs['timestamp'])
|
292 |
+
time_gaps = times.diff()
|
293 |
+
|
294 |
+
for idx, gap in enumerate(time_gaps):
|
295 |
+
if gap and gap.total_seconds() > 600: # 10 minutes threshold
|
296 |
+
abandon_points.append({
|
297 |
+
'topic': topic,
|
298 |
+
'message_before': topic_msgs.iloc[idx-1]['prompt'],
|
299 |
+
'time_gap': gap.total_seconds() / 60, # Convert to minutes
|
300 |
+
'resumed': idx < len(topic_msgs) - 1
|
301 |
+
})
|
302 |
+
|
303 |
+
return abandon_points
|
304 |
+
|
305 |
+
def process_chat_history(self, chat_history: List[Dict[Any, Any]]) -> Dict[str, Any]:
|
306 |
+
"""
|
307 |
+
Process chat history data and generate comprehensive analytics.
|
308 |
+
|
309 |
+
Args:
|
310 |
+
chat_history: List of chat history documents
|
311 |
+
session_info: Dictionary containing session metadata (topic, duration, etc.)
|
312 |
+
|
313 |
+
Returns:
|
314 |
+
Dictionary containing all analytics results
|
315 |
+
"""
|
316 |
+
try:
|
317 |
+
# Convert chat history to DataFrame for easier processing
|
318 |
+
messages_data = []
|
319 |
+
for chat in chat_history:
|
320 |
+
for msg in chat['messages']:
|
321 |
+
messages_data.append({
|
322 |
+
'user_id': chat['user_id'],
|
323 |
+
'session_id': chat['session_id'],
|
324 |
+
'timestamp': msg['timestamp'],
|
325 |
+
'prompt': msg['prompt'],
|
326 |
+
'response': msg['response']
|
327 |
+
})
|
328 |
+
|
329 |
+
df = pd.DataFrame(messages_data)
|
330 |
+
|
331 |
+
# Generate all analytics
|
332 |
+
analytics_results = {
|
333 |
+
'topic_interaction': self._analyze_topic_interaction(df),
|
334 |
+
'question_patterns': self._analyze_question_patterns(df),
|
335 |
+
'sentiment_analysis': self._analyze_sentiment(df),
|
336 |
+
'completion_trends': self._analyze_completion_trends(df),
|
337 |
+
'student_clustering': self._cluster_students(df),
|
338 |
+
'abandoned_conversations': self._analyze_abandoned_conversations(df)
|
339 |
+
}
|
340 |
+
|
341 |
+
return analytics_results
|
342 |
+
|
343 |
+
except Exception as e:
|
344 |
+
logger.error(f"Error processing chat history: {str(e)}")
|
345 |
+
raise
|
346 |
+
|
347 |
+
def _analyze_topic_interaction(self, df: pd.DataFrame) -> Dict[str, Any]:
|
348 |
+
"""Analyze topic interaction frequency and patterns."""
|
349 |
+
topics = self._extract_topics(df)
|
350 |
+
|
351 |
+
topic_stats = {
|
352 |
+
'interaction_counts': Counter(topics),
|
353 |
+
'revisit_patterns': self._calculate_topic_revisits(df, topics),
|
354 |
+
'avg_time_per_topic': self._calculate_avg_time_per_topic(df, topics)
|
355 |
+
}
|
356 |
+
|
357 |
+
return topic_stats
|
358 |
+
|
359 |
+
def _analyze_question_patterns(self, df: pd.DataFrame) -> Dict[str, Any]:
|
360 |
+
"""Analyze question patterns and identify difficult topics."""
|
361 |
+
questions = df[df['prompt'].str.lower().str.split().apply(
|
362 |
+
lambda x: any(word.lower() in self.question_words for word in x)
|
363 |
+
)]
|
364 |
+
|
365 |
+
question_stats = {
|
366 |
+
'total_questions': len(questions),
|
367 |
+
'question_types': self._categorize_questions(questions),
|
368 |
+
'complex_chains': self._identify_complex_chains(df)
|
369 |
+
}
|
370 |
+
|
371 |
+
return question_stats
|
372 |
+
|
373 |
+
def _analyze_sentiment(self, df: pd.DataFrame) -> Dict[str, Any]:
|
374 |
+
"""Perform sentiment analysis on messages."""
|
375 |
+
sentiments = []
|
376 |
+
for prompt in df['prompt']:
|
377 |
+
try:
|
378 |
+
sentiment = self.sentiment_analyzer(prompt)[0]
|
379 |
+
sentiments.append(sentiment['label'])
|
380 |
+
except Exception as e:
|
381 |
+
logger.warning(f"Error in sentiment analysis: {str(e)}")
|
382 |
+
sentiments.append('NEUTRAL')
|
383 |
+
|
384 |
+
sentiment_stats = {
|
385 |
+
'overall_sentiment': Counter(sentiments),
|
386 |
+
'frustration_indicators': self._identify_frustration(df),
|
387 |
+
'resolution_times': self._calculate_resolution_times(df)
|
388 |
+
}
|
389 |
+
|
390 |
+
return sentiment_stats
|
391 |
+
|
392 |
+
def _analyze_completion_trends(self, df: pd.DataFrame) -> Dict[str, Any]:
|
393 |
+
"""Analyze topic completion trends and coverage."""
|
394 |
+
completion_stats = {
|
395 |
+
'completion_rates': self._calculate_completion_rates(df),
|
396 |
+
'time_distribution': self._analyze_time_distribution(df),
|
397 |
+
'coverage_gaps': self._identify_coverage_gaps(df)
|
398 |
+
}
|
399 |
+
|
400 |
+
return completion_stats
|
401 |
+
|
402 |
+
def _cluster_students(self, df: pd.DataFrame) -> Dict[str, Any]:
|
403 |
+
"""Cluster students based on interaction patterns."""
|
404 |
+
student_metrics = self._calculate_student_metrics(df)
|
405 |
+
|
406 |
+
clusters = {
|
407 |
+
'confident': [],
|
408 |
+
'engaged': [],
|
409 |
+
'struggling': []
|
410 |
+
}
|
411 |
+
|
412 |
+
for student_id, metrics in student_metrics.items():
|
413 |
+
cluster = self._determine_student_cluster(metrics)
|
414 |
+
clusters[cluster].append(student_id)
|
415 |
+
|
416 |
+
return clusters
|
417 |
+
|
418 |
+
def _analyze_abandoned_conversations(self, df: pd.DataFrame) -> Dict[str, Any]:
|
419 |
+
"""Identify and analyze abandoned conversations."""
|
420 |
+
abandoned_stats = {
|
421 |
+
'abandon_points': self._identify_abandon_points(df),
|
422 |
+
'incomplete_topics': self._identify_incomplete_topics(df),
|
423 |
+
'dropout_patterns': self._analyze_dropout_patterns(df)
|
424 |
+
}
|
425 |
+
|
426 |
+
return abandoned_stats
|
427 |
+
|
428 |
+
def _identify_incomplete_topics(self, df: pd.DataFrame) -> List[Dict[str, Any]]:
|
429 |
+
"""
|
430 |
+
Identify topics that were started but not completed by students.
|
431 |
+
|
432 |
+
Args:
|
433 |
+
df: DataFrame containing messages
|
434 |
+
|
435 |
+
Returns:
|
436 |
+
List of dictionaries containing incomplete topic information
|
437 |
+
"""
|
438 |
+
incomplete_topics = []
|
439 |
+
topics = self._extract_topics(df)
|
440 |
+
|
441 |
+
for topic in set(topics):
|
442 |
+
escaped_topic = re.escape(topic)
|
443 |
+
topic_msgs = df[df['prompt'].str.contains(escaped_topic, case=False)]
|
444 |
+
|
445 |
+
if len(topic_msgs) > 0:
|
446 |
+
# Check for completion indicators
|
447 |
+
last_msgs = topic_msgs.tail(3) # Look at last 3 messages
|
448 |
+
|
449 |
+
# Consider a topic incomplete if:
|
450 |
+
# 1. There are unanswered questions
|
451 |
+
# 2. Contains frustration indicators
|
452 |
+
# 3. No positive confirmation/understanding indicators
|
453 |
+
has_questions = last_msgs['prompt'].str.contains('|'.join(self.question_words), case=False).any()
|
454 |
+
has_frustration = bool(self._identify_frustration(last_msgs))
|
455 |
+
|
456 |
+
completion_indicators = ['understand', 'got it', 'makes sense', 'thank you', 'clear now']
|
457 |
+
has_completion = last_msgs['prompt'].str.contains('|'.join(completion_indicators), case=False).any()
|
458 |
+
|
459 |
+
if (has_questions or has_frustration) and not has_completion:
|
460 |
+
incomplete_topics.append({
|
461 |
+
'topic': topic,
|
462 |
+
'last_interaction': topic_msgs.iloc[-1]['timestamp'],
|
463 |
+
'message_count': len(topic_msgs),
|
464 |
+
'has_pending_questions': has_questions,
|
465 |
+
'shows_frustration': has_frustration
|
466 |
+
})
|
467 |
+
|
468 |
+
return incomplete_topics
|
469 |
+
|
470 |
+
def _analyze_dropout_patterns(self, df: pd.DataFrame) -> Dict[str, Any]:
|
471 |
+
"""
|
472 |
+
Analyze patterns in where and why students tend to drop out of conversations.
|
473 |
+
|
474 |
+
Args:
|
475 |
+
df: DataFrame containing messages
|
476 |
+
|
477 |
+
Returns:
|
478 |
+
Dictionary containing dropout pattern analysis
|
479 |
+
"""
|
480 |
+
dropout_analysis = {
|
481 |
+
'timing_patterns': {},
|
482 |
+
'topic_patterns': {},
|
483 |
+
'complexity_indicators': {},
|
484 |
+
'engagement_metrics': {}
|
485 |
+
}
|
486 |
+
|
487 |
+
# Analyze timing of dropouts
|
488 |
+
timestamps = pd.to_datetime(df['timestamp'])
|
489 |
+
time_gaps = timestamps.diff()
|
490 |
+
dropout_points = time_gaps[time_gaps > pd.Timedelta(minutes=30)].index
|
491 |
+
|
492 |
+
for point in dropout_points:
|
493 |
+
# Get context before dropout
|
494 |
+
context_msgs = df.loc[max(0, point-5):point]
|
495 |
+
|
496 |
+
# Analyze timing
|
497 |
+
time_of_day = timestamps[point].hour
|
498 |
+
dropout_analysis['timing_patterns'][time_of_day] = \
|
499 |
+
dropout_analysis['timing_patterns'].get(time_of_day, 0) + 1
|
500 |
+
|
501 |
+
# Analyze topics at dropout points
|
502 |
+
dropout_topics = self._extract_topics(context_msgs)
|
503 |
+
for topic in dropout_topics:
|
504 |
+
dropout_analysis['topic_patterns'][topic] = \
|
505 |
+
dropout_analysis['topic_patterns'].get(topic, 0) + 1
|
506 |
+
|
507 |
+
# Analyze complexity
|
508 |
+
msg_lengths = context_msgs['prompt'].str.len().mean()
|
509 |
+
question_density = len(context_msgs[context_msgs['prompt'].str.contains(
|
510 |
+
'|'.join(self.question_words), case=False)]) / len(context_msgs)
|
511 |
+
|
512 |
+
dropout_analysis['complexity_indicators'][point] = {
|
513 |
+
'message_length': msg_lengths,
|
514 |
+
'question_density': question_density
|
515 |
+
}
|
516 |
+
|
517 |
+
# Analyze engagement
|
518 |
+
dropout_analysis['engagement_metrics'][point] = {
|
519 |
+
'messages_before_dropout': len(context_msgs),
|
520 |
+
'response_times': time_gaps[max(0, point-5):point].mean().total_seconds() / 60
|
521 |
+
}
|
522 |
+
|
523 |
+
return dropout_analysis
|
524 |
+
|
525 |
+
def _rank_topics_by_difficulty(self, analytics_results: Dict[str, Any]) -> List[Dict[str, Any]]:
|
526 |
+
"""
|
527 |
+
Rank topics by their difficulty based on various metrics from analytics results.
|
528 |
+
|
529 |
+
Args:
|
530 |
+
analytics_results: Dictionary containing all analytics data
|
531 |
+
|
532 |
+
Returns:
|
533 |
+
List of dictionaries containing topic difficulty rankings and scores
|
534 |
+
"""
|
535 |
+
topic_difficulty = []
|
536 |
+
|
537 |
+
# Extract relevant metrics for each topic
|
538 |
+
topics = set()
|
539 |
+
for topic in analytics_results['topic_interaction']['interaction_counts'].keys():
|
540 |
+
|
541 |
+
# Calculate difficulty score based on multiple factors
|
542 |
+
difficulty_score = 0
|
543 |
+
|
544 |
+
# Factor 1: Question frequency
|
545 |
+
question_count = sum(1 for chain in analytics_results['question_patterns']['complex_chains']
|
546 |
+
if chain['topic'] == topic)
|
547 |
+
difficulty_score += question_count * 0.3
|
548 |
+
|
549 |
+
# Factor 2: Frustration indicators
|
550 |
+
frustration_count = sum(1 for indicator in analytics_results['sentiment_analysis']['frustration_indicators']
|
551 |
+
if topic.lower() in indicator.lower())
|
552 |
+
difficulty_score += frustration_count * 0.25
|
553 |
+
|
554 |
+
# Factor 3: Completion rate (inverse relationship)
|
555 |
+
completion_rate = analytics_results['completion_trends']['completion_rates'].get(topic, 1.0)
|
556 |
+
difficulty_score += (1 - completion_rate) * 0.25
|
557 |
+
|
558 |
+
# Factor 4: Time spent (normalized)
|
559 |
+
avg_time = analytics_results['topic_interaction']['avg_time_per_topic'].get(topic, 0)
|
560 |
+
max_time = max(analytics_results['topic_interaction']['avg_time_per_topic'].values())
|
561 |
+
normalized_time = avg_time / max_time if max_time > 0 else 0
|
562 |
+
difficulty_score += normalized_time * 0.2
|
563 |
+
|
564 |
+
topic_difficulty.append({
|
565 |
+
'topic': topic,
|
566 |
+
'difficulty_score': round(difficulty_score, 2),
|
567 |
+
'metrics': {
|
568 |
+
'question_frequency': question_count,
|
569 |
+
'frustration_indicators': frustration_count,
|
570 |
+
'completion_rate': completion_rate,
|
571 |
+
'avg_time_spent': avg_time
|
572 |
+
}
|
573 |
+
})
|
574 |
+
|
575 |
+
# Sort topics by difficulty score
|
576 |
+
return sorted(topic_difficulty, key=lambda x: x['difficulty_score'], reverse=True)
|
577 |
+
|
578 |
+
def _identify_support_needs(self, analytics_results: Dict[str, Any]) -> Dict[str, List[Dict[str, Any]]]:
|
579 |
+
"""
|
580 |
+
Identify specific support needs for students based on analytics results.
|
581 |
+
|
582 |
+
Args:
|
583 |
+
analytics_results: Dictionary containing all analytics data
|
584 |
+
|
585 |
+
Returns:
|
586 |
+
Dictionary containing support needs categorized by urgency
|
587 |
+
"""
|
588 |
+
support_needs = {
|
589 |
+
'immediate_attention': [],
|
590 |
+
'monitoring_needed': [],
|
591 |
+
'general_support': []
|
592 |
+
}
|
593 |
+
|
594 |
+
# Analyze struggling students
|
595 |
+
for student_id in analytics_results['student_clustering']['struggling']:
|
596 |
+
# Get student-specific metrics
|
597 |
+
student_msgs = analytics_results.get('sentiment_analysis', {}).get('messages', [])
|
598 |
+
frustration_topics = [topic for topic in analytics_results['sentiment_analysis']['frustration_indicators']
|
599 |
+
if any(msg['user_id'] == student_id for msg in student_msgs)]
|
600 |
+
|
601 |
+
# Calculate engagement metrics
|
602 |
+
engagement_level = len([chain for chain in analytics_results['question_patterns']['complex_chains']
|
603 |
+
if any(msg['user_id'] == student_id for msg in chain['messages'])])
|
604 |
+
|
605 |
+
# Identify immediate attention needs
|
606 |
+
if len(frustration_topics) >= 3 or engagement_level < 2:
|
607 |
+
support_needs['immediate_attention'].append({
|
608 |
+
'student_id': student_id,
|
609 |
+
'issues': frustration_topics,
|
610 |
+
'engagement_level': engagement_level,
|
611 |
+
'recommended_actions': [
|
612 |
+
'Schedule one-on-one session',
|
613 |
+
'Review difficult topics',
|
614 |
+
'Provide additional resources'
|
615 |
+
]
|
616 |
+
})
|
617 |
+
|
618 |
+
# Identify monitoring needs
|
619 |
+
elif len(frustration_topics) >= 1 or engagement_level < 4:
|
620 |
+
support_needs['monitoring_needed'].append({
|
621 |
+
'student_id': student_id,
|
622 |
+
'areas_of_concern': frustration_topics,
|
623 |
+
'engagement_level': engagement_level,
|
624 |
+
'recommended_actions': [
|
625 |
+
'Regular progress checks',
|
626 |
+
'Provide supplementary materials'
|
627 |
+
]
|
628 |
+
})
|
629 |
+
|
630 |
+
# General support needs
|
631 |
+
else:
|
632 |
+
support_needs['general_support'].append({
|
633 |
+
'student_id': student_id,
|
634 |
+
'areas_for_improvement': frustration_topics,
|
635 |
+
'engagement_level': engagement_level,
|
636 |
+
'recommended_actions': [
|
637 |
+
'Maintain regular communication',
|
638 |
+
'Encourage participation'
|
639 |
+
]
|
640 |
+
})
|
641 |
+
|
642 |
+
return support_needs
|
643 |
+
|
644 |
+
|
645 |
+
def _extract_topics(self, df: pd.DataFrame) -> List[str]:
|
646 |
+
"""Extract topics from messages using spaCy."""
|
647 |
+
topics = []
|
648 |
+
for doc in self.nlp.pipe(df['prompt']):
|
649 |
+
# Extract noun phrases as potential topics
|
650 |
+
noun_phrases = [chunk.text for chunk in doc.noun_chunks]
|
651 |
+
topics.extend(noun_phrases)
|
652 |
+
return topics
|
653 |
+
|
654 |
+
def _calculate_topic_revisits(self, df: pd.DataFrame, topics: List[str]) -> Dict[str, int]:
|
655 |
+
"""Calculate how often topics are revisited."""
|
656 |
+
topic_visits = Counter(topics)
|
657 |
+
return {topic: count for topic, count in topic_visits.items() if count > 1}
|
658 |
+
|
659 |
+
def _calculate_avg_time_per_topic(self, df: pd.DataFrame, topics: List[str]) -> Dict[str, float]:
|
660 |
+
"""Calculate average time spent per topic."""
|
661 |
+
topic_times = {}
|
662 |
+
for topic in set(topics):
|
663 |
+
escaped_topic = re.escape(topic)
|
664 |
+
topic_msgs = df[df['prompt'].str.contains(escaped_topic, case=False)]
|
665 |
+
if len(topic_msgs) > 1:
|
666 |
+
time_diffs = pd.to_datetime(topic_msgs['timestamp']).diff()
|
667 |
+
avg_time = time_diffs.mean().total_seconds() / 60 # Convert to minutes
|
668 |
+
topic_times[topic] = avg_time
|
669 |
+
return topic_times
|
670 |
+
|
671 |
+
def _identify_complex_chains(self, df: pd.DataFrame) -> List[Dict[str, Any]]:
|
672 |
+
"""Identify complex conversation chains."""
|
673 |
+
chains = []
|
674 |
+
current_chain = []
|
675 |
+
|
676 |
+
for idx, row in df.iterrows():
|
677 |
+
if self._is_followup_question(row['prompt']):
|
678 |
+
current_chain.append(row)
|
679 |
+
else:
|
680 |
+
if len(current_chain) >= 3: # Consider 3+ related questions as complex chain
|
681 |
+
chains.append({
|
682 |
+
'messages': current_chain,
|
683 |
+
'topic': self._extract_topics([current_chain[0]['prompt']])[0],
|
684 |
+
'length': len(current_chain)
|
685 |
+
})
|
686 |
+
current_chain = []
|
687 |
+
|
688 |
+
return chains
|
689 |
+
|
690 |
+
def _generate_topic_priority_list(self, analytics_results: Dict[str, Any]) -> List[Dict[str, Any]]:
|
691 |
+
"""
|
692 |
+
Generate a prioritized list of topics for the upcoming session.
|
693 |
+
|
694 |
+
Args:
|
695 |
+
analytics_results: Dictionary containing all analytics data
|
696 |
+
|
697 |
+
Returns:
|
698 |
+
List of dictionaries containing topics and their priority scores
|
699 |
+
"""
|
700 |
+
topic_priorities = []
|
701 |
+
|
702 |
+
# Get difficulty rankings
|
703 |
+
difficulty_ranking = self._rank_topics_by_difficulty(analytics_results)
|
704 |
+
|
705 |
+
for topic_data in difficulty_ranking:
|
706 |
+
topic = topic_data['topic']
|
707 |
+
|
708 |
+
# Calculate priority score based on multiple factors
|
709 |
+
priority_score = 0
|
710 |
+
|
711 |
+
# Factor 1: Difficulty score (40% weight)
|
712 |
+
priority_score += topic_data['difficulty_score'] * 0.4
|
713 |
+
|
714 |
+
# Factor 2: Student frustration (25% weight)
|
715 |
+
frustration_count = sum(1 for indicator in
|
716 |
+
analytics_results['sentiment_analysis']['frustration_indicators']
|
717 |
+
if topic.lower() in indicator.lower())
|
718 |
+
normalized_frustration = min(frustration_count / 5, 1) # Cap at 5 frustrations
|
719 |
+
priority_score += normalized_frustration * 0.25
|
720 |
+
|
721 |
+
# Factor 3: Incomplete understanding (20% weight)
|
722 |
+
incomplete_topics = analytics_results.get('abandoned_conversations', {}).get('incomplete_topics', [])
|
723 |
+
if any(t['topic'] == topic for t in incomplete_topics):
|
724 |
+
priority_score += 0.2
|
725 |
+
|
726 |
+
# Factor 4: Coverage gaps (15% weight)
|
727 |
+
if topic in analytics_results['completion_trends']['coverage_gaps']:
|
728 |
+
priority_score += 0.15
|
729 |
+
|
730 |
+
topic_priorities.append({
|
731 |
+
'topic': topic,
|
732 |
+
'priority_score': round(priority_score, 2),
|
733 |
+
'reasons': {
|
734 |
+
'difficulty_level': topic_data['difficulty_score'],
|
735 |
+
'frustration_indicators': frustration_count,
|
736 |
+
'has_incomplete_understanding': any(t['topic'] == topic for t in incomplete_topics),
|
737 |
+
'has_coverage_gaps': topic in analytics_results['completion_trends']['coverage_gaps']
|
738 |
+
},
|
739 |
+
'recommended_focus_areas': self._generate_focus_recommendations(topic_data, analytics_results)
|
740 |
+
})
|
741 |
+
|
742 |
+
# Sort by priority score
|
743 |
+
return sorted(topic_priorities, key=lambda x: x['priority_score'], reverse=True)
|
744 |
+
|
745 |
+
def _generate_focus_recommendations(self, topic_data: Dict[str, Any],
|
746 |
+
analytics_results: Dict[str, Any]) -> List[str]:
|
747 |
+
"""Generate specific focus recommendations for a topic."""
|
748 |
+
recommendations = []
|
749 |
+
|
750 |
+
if topic_data['metrics']['question_frequency'] > 3:
|
751 |
+
recommendations.append("Provide more detailed explanations and examples")
|
752 |
+
|
753 |
+
if topic_data['metrics']['completion_rate'] < 0.7:
|
754 |
+
recommendations.append("Break down complex concepts into smaller segments")
|
755 |
+
|
756 |
+
if topic_data['metrics']['frustration_indicators'] > 2:
|
757 |
+
recommendations.append("Review prerequisite concepts and provide additional context")
|
758 |
+
|
759 |
+
return recommendations
|
760 |
+
|
761 |
+
def _is_followup_question(self, prompt: str) -> bool:
|
762 |
+
"""Determine if a prompt is a follow-up question."""
|
763 |
+
followup_indicators = {'also', 'then', 'additionally', 'furthermore', 'related to that'}
|
764 |
+
return any(indicator in prompt.lower() for indicator in followup_indicators)
|
765 |
+
|
766 |
+
def generate_faculty_report(self, analytics_results: Dict[str, Any]) -> Dict[str, Any]:
|
767 |
+
"""Generate a comprehensive report for faculty."""
|
768 |
+
report = {
|
769 |
+
'key_findings': self._generate_key_findings(analytics_results),
|
770 |
+
'recommended_actions': self._generate_recommendations(analytics_results),
|
771 |
+
'topic_difficulty_ranking': self._rank_topics_by_difficulty(analytics_results),
|
772 |
+
'student_support_needs': self._identify_support_needs(analytics_results),
|
773 |
+
'topic_priorities': self._generate_topic_priority_list(analytics_results)
|
774 |
+
}
|
775 |
+
|
776 |
+
return report
|
777 |
+
|
778 |
+
def _generate_key_findings(self, analytics_results: Dict[str, Any]) -> List[str]:
|
779 |
+
"""Generate key findings from analytics results."""
|
780 |
+
findings = []
|
781 |
+
|
782 |
+
# Analyze topic interaction patterns
|
783 |
+
topic_stats = analytics_results['topic_interaction']
|
784 |
+
low_interaction_topics = [topic for topic, count in topic_stats['interaction_counts'].items()
|
785 |
+
if count < 3] # Arbitrary threshold
|
786 |
+
if low_interaction_topics:
|
787 |
+
findings.append(f"Low engagement detected in topics: {', '.join(low_interaction_topics)}")
|
788 |
+
|
789 |
+
# Analyze sentiment patterns
|
790 |
+
sentiment_stats = analytics_results['sentiment_analysis']
|
791 |
+
if sentiment_stats['frustration_indicators']:
|
792 |
+
findings.append("Significant frustration detected in the following areas: " +
|
793 |
+
', '.join(sentiment_stats['frustration_indicators']))
|
794 |
+
|
795 |
+
# Analyze student clustering
|
796 |
+
student_clusters = analytics_results['student_clustering']
|
797 |
+
if len(student_clusters['struggling']) > 0:
|
798 |
+
findings.append(f"{len(student_clusters['struggling'])} students showing signs of difficulty")
|
799 |
+
|
800 |
+
return findings
|
801 |
+
|
802 |
+
def _generate_recommendations(self, analytics_results: Dict[str, Any]) -> List[str]:
|
803 |
+
"""Generate actionable recommendations for faculty."""
|
804 |
+
recommendations = []
|
805 |
+
|
806 |
+
# Analyze complex chains
|
807 |
+
question_patterns = analytics_results['question_patterns']
|
808 |
+
if question_patterns['complex_chains']:
|
809 |
+
topics_needing_clarity = set(chain['topic'] for chain in question_patterns['complex_chains'])
|
810 |
+
recommendations.append(f"Consider providing additional examples for: {', '.join(topics_needing_clarity)}")
|
811 |
+
|
812 |
+
# Analyze completion trends
|
813 |
+
completion_trends = analytics_results['completion_trends']
|
814 |
+
low_completion_topics = [topic for topic, rate in completion_trends['completion_rates'].items()
|
815 |
+
if rate < 0.7] # 70% threshold
|
816 |
+
if low_completion_topics:
|
817 |
+
recommendations.append(f"Review and possibly simplify material for: {', '.join(low_completion_topics)}")
|
818 |
+
|
819 |
+
return recommendations
|
820 |
+
|
821 |
+
# Example usage
|
822 |
+
if __name__ == "__main__":
|
823 |
+
# Initialize analytics engine
|
824 |
+
analytics_engine = NovaScholarAnalytics()
|
825 |
+
|
826 |
+
# Sample usage with dummy data
|
827 |
+
sample_chat_history = [
|
828 |
+
{
|
829 |
+
"user_id": "123",
|
830 |
+
"session_id": "S101",
|
831 |
+
"messages": [
|
832 |
+
{
|
833 |
+
"prompt": "What is DevOps?",
|
834 |
+
"response": "DevOps is a software engineering practice...",
|
835 |
+
"timestamp": datetime.now()
|
836 |
+
}
|
837 |
+
]
|
838 |
+
}
|
839 |
+
]
|
840 |
+
|
841 |
+
# Process analytics
|
842 |
+
results = analytics_engine.process_chat_history(all_chat_histories)
|
843 |
+
|
844 |
+
# Generate faculty report
|
845 |
+
faculty_report = analytics_engine.generate_faculty_report(results)
|
846 |
+
print(faculty_report)
|
847 |
+
# Print results
|
848 |
+
# logger.info("Analytics processing completed")
|
849 |
+
# logger.info(f"Key findings: {faculty_report['key_findings']}")
|
850 |
+
# logger.info(f"Recommendations: {faculty_report['recommended_actions']}")
|
session_page.py
CHANGED
@@ -1,3 +1,5 @@
|
|
|
|
|
|
1 |
import random
|
2 |
import streamlit as st
|
3 |
from datetime import datetime
|
@@ -13,13 +15,21 @@ from dotenv import load_dotenv
|
|
13 |
import os
|
14 |
from pymongo import MongoClient
|
15 |
from gen_mcqs import generate_mcqs, save_quiz, quizzes_collection, get_student_quiz_score, submit_quiz_answers
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
load_dotenv()
|
18 |
MONGO_URI = os.getenv('MONGO_URI')
|
|
|
19 |
client = MongoClient(MONGO_URI)
|
20 |
db = client["novascholar_db"]
|
21 |
polls_collection = db["polls"]
|
22 |
|
|
|
23 |
def get_current_user():
|
24 |
if 'current_user' not in st.session_state:
|
25 |
return None
|
@@ -133,14 +143,18 @@ def display_preclass_content(session, student_id, course_id):
|
|
133 |
if st.button("Mark PDF as Read", key=f"pdf_{material['file_name']}"):
|
134 |
create_notification("PDF marked as read!", "success")
|
135 |
|
|
|
|
|
|
|
|
|
136 |
# Chat input
|
137 |
# Add a check, if materials are available, only then show the chat input
|
138 |
if(st.session_state.user_type == "student"):
|
139 |
if materials:
|
140 |
if prompt := st.chat_input("Ask a question about Pre-class Materials"):
|
141 |
-
if len(st.session_state.messages) >= 20:
|
142 |
-
|
143 |
-
|
144 |
|
145 |
st.session_state.messages.append({"role": "user", "content": prompt})
|
146 |
|
@@ -150,14 +164,20 @@ def display_preclass_content(session, student_id, course_id):
|
|
150 |
|
151 |
# Get document context
|
152 |
context = ""
|
|
|
153 |
materials = resources_collection.find({"session_id": session['session_id']})
|
|
|
154 |
context = ""
|
155 |
vector_data = None
|
156 |
|
|
|
|
|
157 |
context = ""
|
158 |
for material in materials:
|
159 |
resource_id = material['_id']
|
|
|
160 |
vector_data = vectors_collection.find_one({"resource_id": resource_id})
|
|
|
161 |
if vector_data and 'text' in vector_data:
|
162 |
context += vector_data['text'] + "\n"
|
163 |
|
@@ -167,15 +187,33 @@ def display_preclass_content(session, student_id, course_id):
|
|
167 |
|
168 |
try:
|
169 |
# Generate response using Gemini
|
170 |
-
context_prompt = f"""
|
171 |
-
Based on the following context, answer the user's question:
|
172 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
173 |
Context:
|
174 |
{context}
|
175 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
176 |
Question: {prompt}
|
177 |
-
|
178 |
-
Please provide a clear and
|
179 |
"""
|
180 |
|
181 |
response = model.generate_content(context_prompt)
|
@@ -229,10 +267,10 @@ def display_preclass_content(session, student_id, course_id):
|
|
229 |
if file_content:
|
230 |
material_type = st.selectbox("Select Material Type", ["pdf", "docx", "txt"])
|
231 |
if st.button("Upload Material"):
|
232 |
-
upload_resource(course_id, session['session_id'], file_name, uploaded_file, material_type)
|
233 |
|
234 |
# Search for the newly uploaded resource's _id in resources_collection
|
235 |
-
resource_id = resources_collection.find_one({"file_name": file_name})["_id"]
|
236 |
create_vector_store(file_content, resource_id)
|
237 |
st.success("Material uploaded successfully!")
|
238 |
|
@@ -979,6 +1017,205 @@ def display_postclass_analytics(session, course_id):
|
|
979 |
for student in pending_students:
|
980 |
st.markdown(f"- {student.get('full_name', 'Unknown Student')} (SID: {student.get('SID', 'Unknown SID')})")
|
981 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
982 |
def upload_preclass_materials(session_id, course_id):
|
983 |
"""Upload pre-class materials for a session"""
|
984 |
st.subheader("Upload Pre-class Materials")
|
@@ -1069,7 +1306,7 @@ def display_quiz_tab(student_id, course_id, session_id):
|
|
1069 |
st.error("Error submitting quiz. Please try again.")
|
1070 |
|
1071 |
def display_session_content(student_id, course_id, session, username, user_type):
|
1072 |
-
st.title(f"
|
1073 |
|
1074 |
# Check if the date is a string or a datetime object
|
1075 |
if isinstance(session['date'], str):
|
@@ -1078,21 +1315,23 @@ def display_session_content(student_id, course_id, session, username, user_type)
|
|
1078 |
else:
|
1079 |
session_date = session['date']
|
1080 |
|
1081 |
-
|
1082 |
-
st.markdown(f"**Status:** {session['status'].replace('_', ' ').title()}")
|
1083 |
|
|
|
|
|
|
|
1084 |
# Find the course_id of the session in
|
1085 |
|
1086 |
if st.session_state.user_type == 'student':
|
1087 |
tabs = (["Pre-class Work", "In-class Work", "Post-class Work"])
|
1088 |
else:
|
1089 |
-
tabs = (["
|
1090 |
|
1091 |
if st.session_state.user_type == 'student':
|
1092 |
pre_class_tab, in_class_tab, post_class_tab, quiz_tab = st.tabs(["Pre-class Work", "In-class Work", "Post-class Work", "Quizzes"])
|
1093 |
else:
|
1094 |
pre_class_work, in_class_work, post_class_work, preclass_analytics, inclass_analytics, postclass_analytics = st.tabs(["Pre-class Work", "In-class Work", "Post-class Work", "Pre-class Analytics", "In-class Analytics", "Post-class Analytics"])
|
1095 |
-
|
1096 |
# Display pre-class materials
|
1097 |
if st.session_state.user_type == 'student':
|
1098 |
with pre_class_tab:
|
@@ -1114,8 +1353,10 @@ def display_session_content(student_id, course_id, session, username, user_type)
|
|
1114 |
with post_class_work:
|
1115 |
display_post_class_content(session, student_id, course_id)
|
1116 |
with preclass_analytics:
|
1117 |
-
|
1118 |
with inclass_analytics:
|
1119 |
display_inclass_analytics(session, course_id)
|
1120 |
with postclass_analytics:
|
1121 |
display_postclass_analytics(session, course_id)
|
|
|
|
|
|
1 |
+
from collections import defaultdict
|
2 |
+
import json
|
3 |
import random
|
4 |
import streamlit as st
|
5 |
from datetime import datetime
|
|
|
15 |
import os
|
16 |
from pymongo import MongoClient
|
17 |
from gen_mcqs import generate_mcqs, save_quiz, quizzes_collection, get_student_quiz_score, submit_quiz_answers
|
18 |
+
from create_course import courses_collection
|
19 |
+
from pre_class_analytics import NovaScholarAnalytics
|
20 |
+
import openai
|
21 |
+
from openai import OpenAI
|
22 |
+
|
23 |
+
|
24 |
|
25 |
load_dotenv()
|
26 |
MONGO_URI = os.getenv('MONGO_URI')
|
27 |
+
OPENAI_KEY = os.getenv('OPENAI_KEY')
|
28 |
client = MongoClient(MONGO_URI)
|
29 |
db = client["novascholar_db"]
|
30 |
polls_collection = db["polls"]
|
31 |
|
32 |
+
|
33 |
def get_current_user():
|
34 |
if 'current_user' not in st.session_state:
|
35 |
return None
|
|
|
143 |
if st.button("Mark PDF as Read", key=f"pdf_{material['file_name']}"):
|
144 |
create_notification("PDF marked as read!", "success")
|
145 |
|
146 |
+
# Initialize 'messages' in session_state if it doesn't exist
|
147 |
+
if 'messages' not in st.session_state:
|
148 |
+
st.session_state.messages = []
|
149 |
+
|
150 |
# Chat input
|
151 |
# Add a check, if materials are available, only then show the chat input
|
152 |
if(st.session_state.user_type == "student"):
|
153 |
if materials:
|
154 |
if prompt := st.chat_input("Ask a question about Pre-class Materials"):
|
155 |
+
# if len(st.session_state.messages) >= 20:
|
156 |
+
# st.warning("Message limit (20) reached for this session.")
|
157 |
+
# return
|
158 |
|
159 |
st.session_state.messages.append({"role": "user", "content": prompt})
|
160 |
|
|
|
164 |
|
165 |
# Get document context
|
166 |
context = ""
|
167 |
+
print(session['session_id'])
|
168 |
materials = resources_collection.find({"session_id": session['session_id']})
|
169 |
+
print(materials)
|
170 |
context = ""
|
171 |
vector_data = None
|
172 |
|
173 |
+
# for material in materials:
|
174 |
+
# print(material)
|
175 |
context = ""
|
176 |
for material in materials:
|
177 |
resource_id = material['_id']
|
178 |
+
print(resource_id)
|
179 |
vector_data = vectors_collection.find_one({"resource_id": resource_id})
|
180 |
+
# print(vector_data)
|
181 |
if vector_data and 'text' in vector_data:
|
182 |
context += vector_data['text'] + "\n"
|
183 |
|
|
|
187 |
|
188 |
try:
|
189 |
# Generate response using Gemini
|
190 |
+
# context_prompt = f"""
|
191 |
+
# Based on the following context, answer the user's question:
|
192 |
|
193 |
+
# Context:
|
194 |
+
# {context}
|
195 |
+
|
196 |
+
# Question: {prompt}
|
197 |
+
|
198 |
+
# Please provide a clear and concise answer based only on the information provided in the context.
|
199 |
+
# """
|
200 |
+
context_prompt = f"""
|
201 |
+
You are a highly intelligent and resourceful assistant capable of synthesizing information from the provided context.
|
202 |
+
|
203 |
Context:
|
204 |
{context}
|
205 |
+
|
206 |
+
Instructions:
|
207 |
+
1. Base your answers primarily on the given context.
|
208 |
+
2. If the answer to the user's question is not explicitly in the context but can be inferred or synthesized from the information provided, do so thoughtfully.
|
209 |
+
3. Only use external knowledge or web assistance when:
|
210 |
+
- The context lacks sufficient information, and
|
211 |
+
- The question requires knowledge beyond what can be reasonably inferred from the context.
|
212 |
+
4. Clearly state if you are relying on web assistance for any part of your answer.
|
213 |
+
|
214 |
Question: {prompt}
|
215 |
+
|
216 |
+
Please provide a clear and comprehensive answer based on the above instructions.
|
217 |
"""
|
218 |
|
219 |
response = model.generate_content(context_prompt)
|
|
|
267 |
if file_content:
|
268 |
material_type = st.selectbox("Select Material Type", ["pdf", "docx", "txt"])
|
269 |
if st.button("Upload Material"):
|
270 |
+
resource_id = upload_resource(course_id, session['session_id'], file_name, uploaded_file, material_type)
|
271 |
|
272 |
# Search for the newly uploaded resource's _id in resources_collection
|
273 |
+
# resource_id = resources_collection.find_one({"file_name": file_name})["_id"]
|
274 |
create_vector_store(file_content, resource_id)
|
275 |
st.success("Material uploaded successfully!")
|
276 |
|
|
|
1017 |
for student in pending_students:
|
1018 |
st.markdown(f"- {student.get('full_name', 'Unknown Student')} (SID: {student.get('SID', 'Unknown SID')})")
|
1019 |
|
1020 |
+
def get_chat_history(user_id, session_id):
|
1021 |
+
query = {
|
1022 |
+
"user_id": ObjectId(user_id),
|
1023 |
+
"session_id": session_id,
|
1024 |
+
"timestamp": {"$lte": datetime.utcnow()}
|
1025 |
+
}
|
1026 |
+
result = chat_history_collection.find(query)
|
1027 |
+
return list(result)
|
1028 |
+
|
1029 |
+
def get_response_from_llm(raw_data):
|
1030 |
+
messages = [
|
1031 |
+
{
|
1032 |
+
"role": "system",
|
1033 |
+
"content": "You are an AI that refines raw analytics data into actionable insights for faculty reports."
|
1034 |
+
},
|
1035 |
+
{
|
1036 |
+
"role": "user",
|
1037 |
+
"content": f"""
|
1038 |
+
Based on the following analytics data, refine and summarize the insights:
|
1039 |
+
|
1040 |
+
Raw Data:
|
1041 |
+
{raw_data}
|
1042 |
+
|
1043 |
+
Instructions:
|
1044 |
+
1. Group similar topics together under appropriate categories.
|
1045 |
+
2. Remove irrelevant or repetitive entries.
|
1046 |
+
3. Summarize the findings into actionable insights.
|
1047 |
+
4. Provide concise recommendations for improvement based on the findings.
|
1048 |
+
|
1049 |
+
Output:
|
1050 |
+
Provide a structured response with the following format:
|
1051 |
+
{{
|
1052 |
+
"Low Engagement Topics": ["List of Topics"],
|
1053 |
+
"Frustration Areas": ["List of areas"],
|
1054 |
+
"Recommendations": ["Actionable recommendations"],
|
1055 |
+
}}
|
1056 |
+
"""
|
1057 |
+
}
|
1058 |
+
]
|
1059 |
+
try:
|
1060 |
+
client = OpenAI(api_key=OPENAI_KEY)
|
1061 |
+
response = client.chat.completions.create(
|
1062 |
+
model="gpt-4o-mini",
|
1063 |
+
messages=messages,
|
1064 |
+
temperature=0.2
|
1065 |
+
)
|
1066 |
+
content = response.choices[0].message.content
|
1067 |
+
return json.loads(content)
|
1068 |
+
|
1069 |
+
except Exception as e:
|
1070 |
+
st.error(f"Error generating response: {str(e)}")
|
1071 |
+
return None
|
1072 |
+
|
1073 |
+
def get_preclass_analytics(session):
|
1074 |
+
"""Get all user_ids from chat_history collection where session_id matches"""
|
1075 |
+
user_ids = chat_history_collection.distinct("user_id", {"session_id": session['session_id']})
|
1076 |
+
print(user_ids)
|
1077 |
+
session_id = session['session_id']
|
1078 |
+
|
1079 |
+
all_chat_histories = []
|
1080 |
+
|
1081 |
+
for user_id in user_ids:
|
1082 |
+
result = get_chat_history(user_id, session_id)
|
1083 |
+
if result:
|
1084 |
+
for record in result:
|
1085 |
+
chat_history = {
|
1086 |
+
"user_id": record["user_id"],
|
1087 |
+
"session_id": record["session_id"],
|
1088 |
+
"messages": record["messages"]
|
1089 |
+
}
|
1090 |
+
all_chat_histories.append(chat_history)
|
1091 |
+
else:
|
1092 |
+
st.warning("No chat history found for this session.")
|
1093 |
+
|
1094 |
+
# Use the analytics engine
|
1095 |
+
analytics_engine = NovaScholarAnalytics()
|
1096 |
+
results = analytics_engine.process_chat_history(all_chat_histories)
|
1097 |
+
faculty_report = analytics_engine.generate_faculty_report(results)
|
1098 |
+
|
1099 |
+
# Pass this Faculty Report to an LLM model for refinements and clarity
|
1100 |
+
refined_report = get_response_from_llm(faculty_report)
|
1101 |
+
return refined_report
|
1102 |
+
|
1103 |
+
def display_preclass_analytics2(session, course_id):
|
1104 |
+
refined_report = get_preclass_analytics(session)
|
1105 |
+
st.subheader("Pre-class Analytics")
|
1106 |
+
if refined_report:
|
1107 |
+
# Custom CSS to improve the look and feel
|
1108 |
+
st.markdown("""
|
1109 |
+
<style>
|
1110 |
+
.metric-card {
|
1111 |
+
background-color: #f8f9fa;
|
1112 |
+
border-radius: 10px;
|
1113 |
+
padding: 20px;
|
1114 |
+
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
1115 |
+
}
|
1116 |
+
.header-text {
|
1117 |
+
color: #1f77b4;
|
1118 |
+
font-size: 24px;
|
1119 |
+
font-weight: bold;
|
1120 |
+
margin-bottom: 20px;
|
1121 |
+
}
|
1122 |
+
.subheader {
|
1123 |
+
color: #2c3e50;
|
1124 |
+
font-size: 17px;
|
1125 |
+
font-weight: 500;
|
1126 |
+
margin-bottom: 10px;
|
1127 |
+
}
|
1128 |
+
.insight-text {
|
1129 |
+
color: #34495e;
|
1130 |
+
font-size: 16px;
|
1131 |
+
line-height: 1.6;
|
1132 |
+
}
|
1133 |
+
.glossary-card {
|
1134 |
+
padding: 15px;
|
1135 |
+
margin-top: 40px;
|
1136 |
+
}
|
1137 |
+
</style>
|
1138 |
+
""", unsafe_allow_html=True)
|
1139 |
+
|
1140 |
+
# Header
|
1141 |
+
# st.markdown("<h1 style='text-align: center; color: #2c3e50;'>Pre-Class Analytics Dashboard</h1>", unsafe_allow_html=True)
|
1142 |
+
# st.markdown("<p style='text-align: center; color: #7f8c8d;'>Insights from Student Interactions</p>", unsafe_allow_html=True)
|
1143 |
+
|
1144 |
+
# Create three columns for metrics
|
1145 |
+
col1, col2, col3 = st.columns(3)
|
1146 |
+
|
1147 |
+
with col1:
|
1148 |
+
st.markdown("<p class='header-text'>🎯 Low Engagement Topics</p>", unsafe_allow_html=True)
|
1149 |
+
|
1150 |
+
# Group topics by category
|
1151 |
+
topics = refined_report["Low Engagement Topics"]
|
1152 |
+
# categories = defaultdict(list)
|
1153 |
+
for i, topic in enumerate(topics):
|
1154 |
+
st.markdown(f"{i + 1}. <p class='subheader'>{topic}</p>", unsafe_allow_html=True)
|
1155 |
+
|
1156 |
+
# # Categorize topics (you can modify these categories based on your needs)
|
1157 |
+
# for topic in topics:
|
1158 |
+
# if "Data" in topic and ("Type" in topic or "Structure" in topic):
|
1159 |
+
# categories["Data Types"].append(topic)
|
1160 |
+
# elif "Analytics" in topic:
|
1161 |
+
# categories["Analytics Concepts"].append(topic)
|
1162 |
+
# else:
|
1163 |
+
# categories["General Concepts"].append(topic)
|
1164 |
+
|
1165 |
+
# Display categorized topics
|
1166 |
+
# for category, items in categories.items():
|
1167 |
+
# st.markdown(f"<p class='subheader'>{category}</p>", unsafe_allow_html=True)
|
1168 |
+
# i = 0
|
1169 |
+
# for i, item in items:
|
1170 |
+
# st.markdown(f"{i + 1} {item}", unsafe_allow_html=True)
|
1171 |
+
|
1172 |
+
with col2:
|
1173 |
+
st.markdown("<p class='header-text'>⚠️ Frustration Areas</p>", unsafe_allow_html=True)
|
1174 |
+
for i, area in enumerate(refined_report["Frustration Areas"]):
|
1175 |
+
st.markdown(f"{i + 1}. <p class='subheader'>{area}</p>", unsafe_allow_html=True)
|
1176 |
+
|
1177 |
+
with col3:
|
1178 |
+
st.markdown("<p class='header-text'>💡 Recommendations</p>", unsafe_allow_html=True)
|
1179 |
+
for i, rec in enumerate(refined_report["Recommendations"]):
|
1180 |
+
st.markdown(f"{i + 1}. <p class='subheader'>{rec}</p>", unsafe_allow_html=True)
|
1181 |
+
|
1182 |
+
# Glossary section
|
1183 |
+
st.markdown("<div class='glossary-card'>", unsafe_allow_html=True)
|
1184 |
+
# st.markdown("<h3 style='color: #2c3e50;'>Understanding the Metrics</h3>", unsafe_allow_html=True)
|
1185 |
+
|
1186 |
+
explanations = {
|
1187 |
+
"Low Engagement Topics": "Topics where students showed minimal interaction or understanding during their chat sessions. These areas may require additional focus during classroom instruction.",
|
1188 |
+
"Frustration Areas": "Specific concepts or topics where students expressed difficulty or confusion during their interactions with the chatbot. These areas may need immediate attention or alternative teaching approaches.",
|
1189 |
+
"Recommendations": "AI-generated suggestions for improving student engagement and understanding, based on the analyzed chat interactions and identified patterns."
|
1190 |
+
}
|
1191 |
+
|
1192 |
+
st.subheader("Understanding the Metrics")
|
1193 |
+
|
1194 |
+
for metric, explanation in explanations.items():
|
1195 |
+
# st.markdown(f"<p class='subheader'>{metric}</p>", unsafe_allow_html=True)
|
1196 |
+
# st.markdown(f"<p class='insight-text'>{explanation}</p>", unsafe_allow_html=True)
|
1197 |
+
st.markdown(f"<span class='subheader'>**{metric}**</span>: <span class='subheader'>{explanation}</span>", unsafe_allow_html=True)
|
1198 |
+
|
1199 |
+
st.markdown("</div>", unsafe_allow_html=True)
|
1200 |
+
|
1201 |
+
|
1202 |
+
def display_session_analytics(session, course_id):
|
1203 |
+
"""Display session analytics for faculty"""
|
1204 |
+
st.header("Session Analytics")
|
1205 |
+
|
1206 |
+
# Display Pre-class Analytics
|
1207 |
+
display_preclass_analytics2(session, course_id)
|
1208 |
+
|
1209 |
+
# Display In-class Analytics
|
1210 |
+
display_inclass_analytics(session, course_id)
|
1211 |
+
|
1212 |
+
# Display Post-class Analytics
|
1213 |
+
display_postclass_analytics(session, course_id)
|
1214 |
+
|
1215 |
+
|
1216 |
+
|
1217 |
+
|
1218 |
+
|
1219 |
def upload_preclass_materials(session_id, course_id):
|
1220 |
"""Upload pre-class materials for a session"""
|
1221 |
st.subheader("Upload Pre-class Materials")
|
|
|
1306 |
st.error("Error submitting quiz. Please try again.")
|
1307 |
|
1308 |
def display_session_content(student_id, course_id, session, username, user_type):
|
1309 |
+
st.title(f"{session['title']}")
|
1310 |
|
1311 |
# Check if the date is a string or a datetime object
|
1312 |
if isinstance(session['date'], str):
|
|
|
1315 |
else:
|
1316 |
session_date = session['date']
|
1317 |
|
1318 |
+
course_name = courses_collection2.find_one({"course_id": course_id})['title']
|
|
|
1319 |
|
1320 |
+
st.markdown(f"**Date:** {format_datetime(session_date)}")
|
1321 |
+
st.markdown(f"**Course Name:** {course_name}")
|
1322 |
+
|
1323 |
# Find the course_id of the session in
|
1324 |
|
1325 |
if st.session_state.user_type == 'student':
|
1326 |
tabs = (["Pre-class Work", "In-class Work", "Post-class Work"])
|
1327 |
else:
|
1328 |
+
tabs = (["Session Analytics"])
|
1329 |
|
1330 |
if st.session_state.user_type == 'student':
|
1331 |
pre_class_tab, in_class_tab, post_class_tab, quiz_tab = st.tabs(["Pre-class Work", "In-class Work", "Post-class Work", "Quizzes"])
|
1332 |
else:
|
1333 |
pre_class_work, in_class_work, post_class_work, preclass_analytics, inclass_analytics, postclass_analytics = st.tabs(["Pre-class Work", "In-class Work", "Post-class Work", "Pre-class Analytics", "In-class Analytics", "Post-class Analytics"])
|
1334 |
+
# pre_class_work, in_class_work, post_class_work, session_analytics = st.tabs(["Pre-class Work", "In-class Work", "Post-class Work", "Session Analytics"])
|
1335 |
# Display pre-class materials
|
1336 |
if st.session_state.user_type == 'student':
|
1337 |
with pre_class_tab:
|
|
|
1353 |
with post_class_work:
|
1354 |
display_post_class_content(session, student_id, course_id)
|
1355 |
with preclass_analytics:
|
1356 |
+
display_preclass_analytics2(session, course_id)
|
1357 |
with inclass_analytics:
|
1358 |
display_inclass_analytics(session, course_id)
|
1359 |
with postclass_analytics:
|
1360 |
display_postclass_analytics(session, course_id)
|
1361 |
+
# with session_analytics:
|
1362 |
+
# display_session_analytics(session, course_id)
|