Spaces:
Running
Running
File size: 9,994 Bytes
1b7e88c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 |
from __future__ import annotations
import re
from abc import ABC, abstractmethod
from collections import defaultdict
from collections.abc import Hashable
from pathlib import Path
from typing import Any, ClassVar, Dict, List, Optional, TypeVar, Union
from PIL import Image
from pydantic import Field, field_validator
from tenacity import retry, stop_after_attempt, stop_after_delay
from ...base import BotBase
from ...utils.env import EnvVar
from ...utils.general import LRUCache
from ...utils.registry import registry
from .prompt.base import _OUTPUT_PARSER, StrParser
from .prompt.parser import BaseOutputParser
from .prompt.prompt import PromptTemplate
from .schemas import Message
import copy
from collections.abc import Iterator
T = TypeVar("T", str, dict, list)
class BaseLLM(BotBase, ABC):
cache: bool = False
lru_cache: LRUCache = Field(default=LRUCache(EnvVar.LLM_CACHE_NUM))
@property
def workflow_instance_id(self) -> str:
if hasattr(self, "_parent"):
return self._parent.workflow_instance_id
return None
@workflow_instance_id.setter
def workflow_instance_id(self, value: str):
if hasattr(self, "_parent"):
self._parent.workflow_instance_id = value
@abstractmethod
def _call(self, records: List[Message], **kwargs) -> str:
"""Run the LLM on the given prompt and input."""
async def _acall(self, records: List[Message], **kwargs) -> str:
"""Run the LLM on the given prompt and input."""
raise NotImplementedError("Async generation not implemented for this LLM.")
def generate(self, records: List[Message], **kwargs) -> str: # TODO: use python native lru cache
"""Run the LLM on the given prompt and input."""
if self.cache:
key = self._cache_key(records)
cached_res = self.lru_cache.get(key)
if cached_res:
return cached_res
else:
gen = self._call(records, **kwargs)
self.lru_cache.put(key, gen)
return gen
else:
return self._call(records, **kwargs)
@retry(
stop=(
stop_after_delay(EnvVar.STOP_AFTER_DELAY)
| stop_after_attempt(EnvVar.STOP_AFTER_ATTEMPT)
),
reraise=True,
)
async def agenerate(self, records: List[str], **kwargs) -> str:
"""Run the LLM on the given prompt and input."""
if self.cache:
key = self._cache_key(records)
cached_res = self.lru_cache.get(key)
if cached_res:
return cached_res
else:
gen = await self._acall(records, **kwargs)
self.lru_cache.put(key, gen)
return gen
else:
return await self._acall(records, **kwargs)
def _cache_key(self, records: List[Message]) -> int:
return str([item.model_dump() for item in records])
def dict(self, *args, **kwargs):
kwargs["exclude"] = {"lru_cache"}
return super().model_dump(*args, **kwargs)
def json(self, *args, **kwargs):
kwargs["exclude"] = {"lru_cache"}
return super().model_dump_json(*args, **kwargs)
T = TypeVar("T", str, dict, list)
class BaseLLMBackend(BotBase, ABC):
"""Prompts prepare and LLM infer"""
output_parser: Optional[BaseOutputParser] = None
prompts: List[PromptTemplate] = []
llm: BaseLLM
@property
def token_usage(self):
if not hasattr(self, 'workflow_instance_id'):
raise AttributeError("workflow_instance_id not set")
return dict(self.stm(self.workflow_instance_id).get('token_usage', defaultdict(int)))
@field_validator("output_parser", mode="before")
@classmethod
def set_output_parser(cls, output_parser: Union[BaseOutputParser, Dict, None]):
if output_parser is None:
return StrParser()
elif isinstance(output_parser, BaseOutputParser):
return output_parser
elif isinstance(output_parser, dict):
return _OUTPUT_PARSER[output_parser["name"]](**output_parser)
else:
raise ValueError
@field_validator("prompts", mode="before")
@classmethod
def set_prompts(
cls, prompts: List[Union[PromptTemplate, Dict, str]]
) -> List[PromptTemplate]:
init_prompts = []
for prompt in prompts:
prompt = copy.deepcopy(prompt)
if isinstance(prompt, Path):
if prompt.suffix == ".prompt":
init_prompts.append(PromptTemplate.from_file(prompt))
elif isinstance(prompt, str):
if prompt.endswith(".prompt"):
init_prompts.append(PromptTemplate.from_file(prompt))
init_prompts.append(PromptTemplate.from_template(prompt))
elif isinstance(prompt, dict):
init_prompts.append(PromptTemplate.from_config(prompt))
elif isinstance(prompt, PromptTemplate):
init_prompts.append(prompt)
else:
raise ValueError(
"Prompt only support str, dict and PromptTemplate object"
)
return init_prompts
@field_validator("llm", mode="before")
@classmethod
def set_llm(cls, llm: Union[BaseLLM, Dict]):
if isinstance(llm, dict):
return registry.get_llm(llm["name"])(**llm)
elif isinstance(llm, BaseLLM):
return llm
else:
raise ValueError("LLM only support dict and BaseLLM object")
def prep_prompt(
self, input_list: List[Dict[str, Any]], prompts=None, **kwargs
) -> List[List[Message]]:
"""Prepare prompts from inputs."""
if prompts is None:
prompts = self.prompts
images = []
if len(kwargs_images := kwargs.get("images", [])):
images = kwargs_images
processed_prompts = []
for inputs in input_list:
records = []
for prompt in prompts:
selected_inputs = {k: inputs.get(k, "") for k in prompt.input_variables}
prompt_str = prompt.template
parts = re.split(r"(\{\{.*?\}\})", prompt_str)
formatted_parts = []
for part in parts:
if part.startswith("{{") and part.endswith("}}"):
part = part[2:-2].strip()
value = selected_inputs[part]
if isinstance(value, (Image.Image, list)):
formatted_parts.extend(
[value] if isinstance(value, Image.Image) else value
)
else:
formatted_parts.append(str(value))
else:
formatted_parts.append(str(part))
formatted_parts = (
formatted_parts[0] if len(formatted_parts) == 1 else formatted_parts
)
if prompt.role == "system":
records.append(Message.system(formatted_parts))
elif prompt.role == "user":
records.append(Message.user(formatted_parts))
if len(images):
records.append(Message.user(images))
processed_prompts.append(records)
return processed_prompts
def infer(self, input_list: List[Dict[str, Any]], **kwargs) -> List[T]:
prompts = self.prep_prompt(input_list, **kwargs)
res = []
stm_token_usage = self.stm(self.workflow_instance_id).get('token_usage', defaultdict(int))
def process_stream(self, stream_output):
for chunk in stream_output:
if chunk.usage is not None:
for key, value in chunk.usage.dict().items():
if key in ["prompt_tokens", "completion_tokens", 'total_tokens']:
if value is not None:
stm_token_usage[key] += value
self.stm(self.workflow_instance_id)['token_usage'] = stm_token_usage
yield chunk
for prompt in prompts:
output = self.llm.generate(prompt, **kwargs)
if not isinstance(output, Iterator):
for key, value in output.get("usage", {}).items():
if key in ["prompt_tokens", "completion_tokens", 'total_tokens']:
if value is not None:
stm_token_usage[key] += value
if not self.llm.stream:
for choice in output["choices"]:
if choice.get("message"):
choice["message"]["content"] = self.output_parser.parse(
choice["message"]["content"]
)
res.append(output)
else:
res.append(process_stream(self, output))
self.stm(self.workflow_instance_id)['token_usage'] = stm_token_usage
return res
async def ainfer(self, input_list: List[Dict[str, Any]], **kwargs) -> List[T]:
prompts = self.prep_prompt(input_list)
res = []
for prompt in prompts:
output = await self.llm.agenerate(prompt, **kwargs)
for key, value in output["usage"].items():
self.token_usage[key] += value
for choice in output["choices"]:
if choice.get("message"):
choice["message"]["content"] = self.output_parser.parse(
choice["message"]["content"]
)
res.append(output)
return res
def simple_infer(self, **kwargs: Any) -> T:
return self.infer([kwargs])[0]
async def simple_ainfer(self, **kwargs: Any) -> T:
return await self.ainfer([kwargs])[0]
|