Spaces:
Running
Running
File size: 10,441 Bytes
1b7e88c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
import json
import time
from omagent_core.clients.devices.Aaas.schemas import (ConversationEvent, MessageType)
from omagent_core.clients.input_base import InputBase
from omagent_core.engine.http.models.workflow_status import running_status
from omagent_core.engine.orkes.orkes_workflow_client import (
workflow_client)
from omagent_core.services.connectors.redis import RedisConnector
from omagent_core.utils.logger import logging
from omagent_core.utils.registry import registry
@registry.register_component()
class AaasInput(InputBase):
redis_stream_client: RedisConnector
def read_input(self, workflow_instance_id: str, input_prompt=""):
result = self._parse_workflow_instance_id(workflow_instance_id)
workflow_instance_id = result.get('workflow_instance_id', '')
agent_id = result.get('agent_id', '')
conversation_id = result.get('conversation_id', '')
chat_id = result.get('chat_id', '')
stream_name = f"agent_os:conversation:input:{workflow_instance_id}"
group_name = "OmAaasAgentConsumerGroup" # consumer group name
consumer_name = f"{workflow_instance_id}_agent" # consumer name
poll_interval: int = 1
if input_prompt is not None:
start_id = self.send_output_message(agent_id, conversation_id, chat_id, input_prompt)
else:
current_timestamp = int(time.time() * 1000)
start_id = f"{current_timestamp}-0"
result = {}
# ensure consumer group exists
try:
self.redis_stream_client._client.xgroup_create(
stream_name, group_name, id="0", mkstream=True
)
except Exception as e:
logging.debug(f"Consumer group may already exist: {e}")
logging.info(
f"Listening to Redis stream: {stream_name} in group: {group_name} start_id: {start_id}"
)
data_flag = False
while True:
try:
# logging.info(f"Checking workflow status: {workflow_instance_id}")
workflow_status = workflow_client.get_workflow_status(
workflow_instance_id
)
if workflow_status.status not in running_status:
logging.info(
f"Workflow {workflow_instance_id} is not running, exiting..."
)
break
# read new messages from redis stream
messages = self.redis_stream_client._client.xrevrange(
stream_name, max="+", min=start_id, count=1
)
logging.info(f"Messages: {messages}")
# Convert byte data to string
messages = [
(
message_id,
{
k.decode("utf-8"): v.decode("utf-8")
for k, v in message.items()
},
)
for message_id, message in messages
]
for message_id, message in messages:
data_flag = self.process_message(message, result)
if data_flag:
break
# Sleep for the specified interval before checking for new messages again
# logging.info(f"Sleeping for {poll_interval} seconds, waiting for {stream_name} ...")
time.sleep(poll_interval)
except Exception as e:
logging.error(f"Error while listening to stream: {e}")
time.sleep(poll_interval) # Wait before retrying
return result
def process_message(self, message, result):
logging.info(f"Received message: {message}")
try:
payload = message.get("payload")
messages = []
for dialong in payload.get('messages', []):
content = []
for item in dialong.get('contents', []):
content.append({
'type': item.get('contentType', 'unknown'),
'data': item.get('content')
})
messages.append({
'role': dialong.get('role'),
'content': content
})
payload['messages'] = messages
"""
{
"agent_id": "string",
"messages": [
{
"role": "string",
"content": [
{
"type": "string",
"data": "string"
}
]
}
],
"kwargs": {}
}
"""
# check payload data
if not payload:
logging.error("Payload is empty")
return False
try:
payload_data = json.loads(payload)
except json.JSONDecodeError as e:
logging.error(f"Payload is not a valid JSON: {e}")
return False
if "agent_id" not in payload_data:
logging.error("Payload does not contain 'agent_id' key")
return False
if "messages" not in payload_data:
logging.error("Payload does not contain 'messages' key")
return False
if not isinstance(payload_data["messages"], list):
logging.error("'messages' should be a list")
return False
for message in payload_data["messages"]:
if not isinstance(message, dict):
logging.error("Each item in 'messages' should be a dictionary")
return False
if "role" not in message or "content" not in message:
logging.error(
"Each item in 'messages' should contain 'role' and 'content' keys"
)
return False
if not isinstance(message["content"], list):
logging.error("'content' should be a list")
return False
for content in message["content"]:
if not isinstance(content, dict):
logging.error("Each item in 'content' should be a dictionary")
return False
if "type" not in content or "data" not in content:
logging.error(
"Each item in 'content' should contain 'type' and 'data' keys"
)
return False
message_data = json.loads(payload)
result.update(message_data)
except Exception as e:
logging.error(f"Error processing message: {e}")
return False
return True
@staticmethod
def _parse_workflow_instance_id(data: str):
split_data = data.split('|')
if not split_data:
return {}
result = {}
keys = [
'workflow_instance_id',
'agent_id',
'conversation_id',
'chat_id',
]
for index, value in enumerate(split_data):
if index + 1 <= len(keys):
result.setdefault(keys[index], value)
return result
def _create_output_data(
self,
event='',
conversation_id='',
chat_id='',
agent_id='',
status='',
contentType='',
content='',
type='',
is_finish=True
):
data = {
'content': json.dumps({
'event': event,
'data': {
'conversationId': conversation_id,
'chatId': chat_id,
'agentId': agent_id,
'createTime': None,
'endTime': None,
'status': status,
'contentType': contentType,
'content': content,
'type': type,
'isFinish': is_finish
}
}, ensure_ascii=False)
}
return data
def send_base_message(
self,
event='',
conversation_id='',
chat_id='',
agent_id='',
status='',
contentType='',
content='',
type='',
is_finish=True
):
stream_name = f"agent_os:conversation:output:{conversation_id}"
group_name = "OmAaasAgentConsumerGroup" # replace with your consumer group name
message = self._create_output_data(
event=event,
conversation_id=conversation_id,
chat_id=chat_id,
agent_id=agent_id,
status=status,
contentType=contentType,
content=content,
type=type,
is_finish=is_finish
)
message_id = self.send_to_group(stream_name, group_name, message)
return message_id
def send_output_message(
self,
agent_id,
conversation_id,
chat_id,
msg,
):
return self.send_base_message(
event=ConversationEvent.MESSAGE_DELTA.value,
conversation_id=conversation_id,
chat_id=chat_id,
agent_id=agent_id,
status='completed',
contentType=MessageType.TEXT.value,
content=msg,
type='ask_complete',
is_finish=True
)
def send_to_group(self, stream_name, group_name, data):
logging.info(f"Stream: {stream_name}, Group: {group_name}, Data: {data}")
message_id = self.redis_stream_client._client.xadd(stream_name, data)
try:
self.redis_stream_client._client.xgroup_create(
stream_name, group_name, id="0"
)
except Exception as e:
logging.debug(f"Consumer group may already exist: {e}")
return message_id
|