Spaces:
Sleeping
Sleeping
File size: 12,253 Bytes
1b7e88c 36633d8 1b7e88c 9f2c01e 1b7e88c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
import os
import sysconfig
from datetime import datetime
from typing import Any, Dict, List, Union, Optional
import geocoder
from openai import AsyncOpenAI, OpenAI
from pydantic import Field
from omagent_core.utils.registry import registry
from omagent_core.models.llms.base import BaseLLM
from omagent_core.models.llms.schemas import Content, Message
BASIC_SYS_PROMPT = """You are an intelligent agent that can help in many regions.
Flowing are some basic information about your working environment, please try your best to answer the questions based on them if needed.
Be confident about these information and don't let others feel these information are presets.
Be concise.
---BASIC INFORMATION---
Current Datetime: {}
Region: {}
Operating System: {}"""
@registry.register_llm()
class OpenaiGPTLLM(BaseLLM):
model_id: str = Field(
default=os.getenv("MODEL_ID", "gpt-4o"), description="The model id of openai"
)
vision: bool = Field(default=False, description="Whether the model supports vision")
endpoint: str = Field(
default=os.getenv("ENDPOINT", "https://api.openai.com/v1"),
description="The endpoint of LLM service",
)
api_key: str = Field(
default=os.getenv("API_KEY"), description="The api key of openai"
)
temperature: float = Field(default=1.0, description="The temperature of LLM")
top_p: float = Field(
default=1.0,
description="The top p of LLM, controls diversity of responses. Should not be used together with temperature - use either temperature or top_p but not both",
)
stream: bool = Field(default=False, description="Whether to stream the response")
max_tokens: int = Field(default=2048, description="The max tokens of LLM")
use_default_sys_prompt: bool = Field(
default=True, description="Whether to use the default system prompt"
)
response_format: Optional[Union[dict, str]] = Field(default='text', description="The response format of openai")
n: int = Field(default=1, description="The number of responses to generate")
frequency_penalty: float = Field(
default=0, description="The frequency penalty of LLM, -2 to 2"
)
logit_bias: Optional[dict] = Field(
default=None, description="The logit bias of LLM"
)
logprobs: bool = Field(default=False, description="The logprobs of LLM")
top_logprobs: Optional[int] = Field(
default=None,
description="The top logprobs of LLM, logprobs must be set to true if this parameter is used",
)
stop: Union[str, List[str], None] = Field(
default='',
description="Specifies stop sequences that will halt text generation, can be string or list of strings",
)
stream_options: Optional[dict] = Field(
default=None,
description="Configuration options for streaming responses when stream=True",
)
tools: Optional[List[dict]] = Field(
default=None,
description="A list of function tools (max 128) that the model can call, each requiring a type, name and optional description/parameters defined in JSON Schema format.",
)
tool_choice: Optional[str] = Field(
default="none",
description="Controls which tool (if any) is called by the model: 'none', 'auto', 'required', or a specific tool.",
)
class Config:
"""Configuration for this pydantic object."""
protected_namespaces = ()
extra = "allow"
def check_response_format(self) -> Optional[dict]:
if isinstance(self.response_format, str):
if self.response_format == "text":
self.response_format = {"type": "text"}
elif self.response_format == "json_object":
self.response_format = {"type": "json_object"}
elif isinstance(self.response_format, dict):
for key, value in self.response_format.items():
if key not in ["type", "json_schema"]:
raise ValueError(f"Invalid response format key: {key}")
if key == "type":
if value not in ["text", "json_object"]:
raise ValueError(f"Invalid response format value: {value}")
elif key == "json_schema":
if not isinstance(value, dict):
raise ValueError(f"Invalid response format value: {value}")
else:
raise ValueError(f"Invalid response format: {self.response_format}")
def model_post_init(self, __context: Any) -> None:
self.check_response_format()
self.client = OpenAI(api_key=self.api_key, base_url=self.endpoint)
self.aclient = AsyncOpenAI(api_key=self.api_key, base_url=self.endpoint)
def _call(self, records: List[Message], **kwargs) -> Dict:
if self.api_key is None or self.api_key == "":
raise ValueError("api_key is required")
messages = self._msg2req(records)
print(f'messages: {messages}')
if self.vision:
res = self.client.chat.completions.create(
model=self.model_id,
messages=messages,
temperature=kwargs.get("temperature", self.temperature),
max_tokens=kwargs.get("max_tokens", self.max_tokens),
stream=kwargs.get("stream", self.stream),
n=kwargs.get("n", self.n),
top_p=kwargs.get("top_p", self.top_p),
frequency_penalty=kwargs.get(
"frequency_penalty", self.frequency_penalty
),
logit_bias=kwargs.get("logit_bias", self.logit_bias),
logprobs=kwargs.get("logprobs", self.logprobs),
top_logprobs=kwargs.get("top_logprobs", self.top_logprobs),
stop=kwargs.get("stop", self.stop),
stream_options=kwargs.get("stream_options", self.stream_options),
)
else:
res = self.client.chat.completions.create(
model=self.model_id,
messages=messages,
temperature=kwargs.get("temperature", self.temperature),
max_tokens=kwargs.get("max_tokens", self.max_tokens),
response_format=kwargs.get("response_format", self.response_format),
tools=kwargs.get("tools", None),
tool_choice=kwargs.get("tool_choice", None),
stream=kwargs.get("stream", self.stream),
n=kwargs.get("n", self.n),
top_p=kwargs.get("top_p", self.top_p),
frequency_penalty=kwargs.get(
"frequency_penalty", self.frequency_penalty
),
logit_bias=kwargs.get("logit_bias", self.logit_bias),
logprobs=kwargs.get("logprobs", self.logprobs),
top_logprobs=kwargs.get("top_logprobs", self.top_logprobs),
stop=kwargs.get("stop", self.stop),
stream_options=kwargs.get("stream_options", self.stream_options),
)
if kwargs.get("stream", self.stream):
return res
else:
return res.model_dump()
async def _acall(self, records: List[Message], **kwargs) -> Dict:
if self.api_key is None or self.api_key == "":
raise ValueError("api_key is required")
messages = self._msg2req(records)
if self.vision:
res = await self.aclient.chat.completions.create(
model=self.model_id,
messages=messages,
temperature=kwargs.get("temperature", self.temperature),
max_tokens=kwargs.get("max_tokens", self.max_tokens),
n=kwargs.get("n", self.n),
top_p=kwargs.get("top_p", self.top_p),
frequency_penalty=kwargs.get(
"frequency_penalty", self.frequency_penalty
),
logit_bias=kwargs.get("logit_bias", self.logit_bias),
logprobs=kwargs.get("logprobs", self.logprobs),
top_logprobs=kwargs.get("top_logprobs", self.top_logprobs),
stop=kwargs.get("stop", self.stop),
stream_options=kwargs.get("stream_options", self.stream_options),
)
else:
res = await self.aclient.chat.completions.create(
model=self.model_id,
messages=messages,
temperature=kwargs.get("temperature", self.temperature),
max_tokens=kwargs.get("max_tokens", self.max_tokens),
response_format=kwargs.get("response_format", self.response_format),
tools=kwargs.get("tools", None),
n=kwargs.get("n", self.n),
top_p=kwargs.get("top_p", self.top_p),
frequency_penalty=kwargs.get(
"frequency_penalty", self.frequency_penalty
),
logit_bias=kwargs.get("logit_bias", self.logit_bias),
logprobs=kwargs.get("logprobs", self.logprobs),
top_logprobs=kwargs.get("top_logprobs", self.top_logprobs),
stop=kwargs.get("stop", self.stop),
stream_options=kwargs.get("stream_options", self.stream_options),
)
return res.model_dump()
def _msg2req(self, records: List[Message]) -> dict:
def get_content(msg: List[Content] | Content) -> List[dict] | str:
if isinstance(msg, list):
return [c.model_dump(exclude_none=True) for c in msg]
elif isinstance(msg, Content) and msg.type == "text":
return msg.text
elif isinstance(msg, Content) and msg.type == "image_url":
return [msg.model_dump(exclude_none=True)]
else:
print(f'msg: {msg}')
raise ValueError("Invalid message type")
messages = [
{"role": message.role, "content": get_content(message.content)}
for message in records
]
if self.vision:
processed_messages = []
for message in messages:
if message["role"] == "user":
if isinstance(message["content"], str):
message["content"] = [
{"type": "text", "text": message["content"]}
]
merged_dict = {}
for message in messages:
if message["role"] == "user":
merged_dict["role"] = message["role"]
if "content" in merged_dict:
merged_dict["content"] += message["content"]
else:
merged_dict["content"] = message["content"]
else:
processed_messages.append(message)
processed_messages.append(merged_dict)
messages = processed_messages
if self.use_default_sys_prompt:
messages = [self._generate_default_sys_prompt()] + messages
return messages
def _generate_default_sys_prompt(self) -> Dict:
loc = self._get_location()
os = self._get_linux_distribution()
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
promt_str = BASIC_SYS_PROMPT.format(current_time, loc, os)
return {"role": "system", "content": promt_str}
def _get_linux_distribution(self) -> str:
platform = sysconfig.get_platform()
if "linux" in platform:
if os.path.exists("/etc/lsb-release"):
with open("/etc/lsb-release", "r") as f:
for line in f:
if line.startswith("DISTRIB_DESCRIPTION="):
return line.split("=")[1].strip()
elif os.path.exists("/etc/os-release"):
with open("/etc/os-release", "r") as f:
for line in f:
if line.startswith("PRETTY_NAME="):
return line.split("=")[1].strip()
return platform
def _get_location(self) -> str:
g = geocoder.ip("me")
if g.ok:
return g.city + "," + g.country
else:
return "unknown"
|