Spaces:
Sleeping
Sleeping
File size: 9,829 Bytes
1b7e88c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
from typing import Any
from uuid import uuid4
import numpy as np
from omagent_core.utils.error import VQLError
from omagent_core.utils.registry import registry
from pydantic import BaseModel
from pymilvus import Collection, DataType, MilvusClient, connections, utility
from pymilvus.client import types
@registry.register_component()
class MilvusHandler(BaseModel):
host_url: str = "./memory.db"
user: str = ""
password: str = ""
db_name: str = "default"
primary_field: Any = None
vector_field: Any = None
class Config:
"""Configuration for this pydantic object."""
extra = "allow"
arbitrary_types_allowed = True
def __init__(self, **data: Any):
super().__init__(**data)
self.milvus_client = MilvusClient(
uri=self.host_url,
user=self.user,
password=self.password,
db_name=self.db_name,
)
def is_collection_in(self, collection_name):
"""
Check if a collection exists in Milvus.
Args:
collection_name (str): The name of the collection to check.
Returns:
bool: True if the collection exists, False otherwise.
"""
return self.milvus_client.has_collection(collection_name)
def make_collection(self, collection_name, schema):
"""
Create a new collection in Milvus.
This method will first check if a collection with the given name already exists.
If it does, it will print a message and do nothing.
If it doesn't, it will create a new collection with the given name and schema,
and then create an index for the vector field in the collection.
Args:
collection_name (str): The name of the collection to create.
schema (CollectionSchema): The schema of the collection to create.
Raises:
VQLError: If the schema does not have exactly one primary key.
"""
index_params = self.milvus_client.prepare_index_params()
for field in schema.fields:
if (
field.dtype == DataType.FLOAT_VECTOR
or field.dtype == DataType.BINARY_VECTOR
):
index_params.add_index(
field_name=field.name,
index_name=field.name,
index_type="FLAT",
metric_type="COSINE",
params={"nlist": 128},
)
print(f"{field.name} of {collection_name} index created")
if self.is_collection_in(collection_name):
print(f"{collection_name} collection already exists")
else:
self.milvus_client.create_collection(
collection_name, schema=schema, index_params=index_params
)
print(f"Create collection {collection_name} successfully")
def drop_collection(self, collection_name):
"""
Drop a collection in Milvus.
This method will first check if a collection with the given name exists.
If it does, it will drop the collection and print a success message.
If it doesn't, it will print a message indicating that the collection does not exist.
Args:
collection_name (str): The name of the collection to drop.
"""
if self.is_collection_in(collection_name):
self.milvus_client.drop_collection(collection_name)
print(f"Drop collection {collection_name} successfully")
else:
print(f"{collection_name} collection does not exist")
def do_add(self, collection_name, vectors):
"""
Add vectors to a collection in Milvus.
This method will first check if a collection with the given name exists.
If it does, it will add the vectors to the collection and return the IDs of the added vectors.
If it doesn't, it will raise a VQLError.
Args:
collection_name (str): The name of the collection to add vectors to.
vectors (list): The vectors to add to the collection.
Returns:
list: The IDs of the added vectors.
Raises:
VQLError: If the collection does not exist.
"""
if self.is_collection_in(collection_name):
res = self.milvus_client.insert(
collection_name=collection_name, data=vectors
)
return res["ids"]
else:
raise VQLError(500, detail=f"{collection_name} collection does not exist")
def match(
self,
collection_name,
query_vectors: list,
query_field,
output_fields: list = None,
res_size=10,
filter_expr="",
threshold=0,
):
"""
Perform a vector similarity search in a specified collection in Milvus.
This method will first check if a collection with the given name exists.
If it does, it will perform a vector similarity search using the provided query vectors,
and return the search results.
If it doesn't, it will raise a VQLError.
Args:
collection_name (str): The name of the collection to search in.
query_vectors (list): The vectors to use as query for the search.
query_field (str): The field to perform the search on.
output_fields (list): The fields to include in the search results.
res_size (int): The maximum number of search results to return.
filter_expr (str): The filter expression to apply during the search.
threshold (float): The threshold for the similarity search.
Returns:
list: The search results.
Raises:
VQLError: If the collection does not exist.
"""
if self.is_collection_in(collection_name):
search_params = {
"metric_type": "COSINE",
"ignore_growing": False,
"params": {
"nprobe": 10,
"radius": 2 * threshold - 1,
"range_filter": 1,
},
}
hits = self.milvus_client.search(
collection_name=collection_name,
data=query_vectors,
anns_field=query_field,
search_params=search_params,
limit=res_size,
output_fields=output_fields,
filter=filter_expr,
)
return hits
else:
raise VQLError(500, detail=f"{collection_name} collection does not exist")
def delete_doc_by_ids(self, collection_name, ids):
"""
Delete specific documents in a collection in Milvus by their IDs.
This method will first check if a collection with the given name exists.
If it does, it will delete the documents with the provided IDs from the collection.
If it doesn't, it will raise a VQLError.
Args:
collection_name (str): The name of the collection to delete documents from.
ids (list): The IDs of the documents to delete.
Raises:
VQLError: If the collection does not exist.
"""
if self.is_collection_in(collection_name):
delete_expr = f"{self.primary_field} in {ids}"
res = self.milvus_client.delete(
collection_name=collection_name, filter=delete_expr
)
return res
else:
raise VQLError(500, detail=f"{collection_name} collection does not exist")
def delete_doc_by_expr(self, collection_name, expr):
"""
Delete specific documents in a collection in Milvus by an expression.
This method will first check if a collection with the given name exists.
If it does, it will delete the documents that match the provided expression from the collection.
If it doesn't, it will raise a VQLError.
Args:
collection_name (str): The name of the collection to delete documents from.
expr (str): The expression to match the documents to delete.
Raises:
VQLError: If the collection does not exist.
"""
if self.is_collection_in(collection_name):
self.milvus_client.delete(collection_name=collection_name, filter=expr)
else:
raise VQLError(500, detail=f"{collection_name} collection does not exist")
if __name__ == "__main__":
from pymilvus import CollectionSchema, DataType, FieldSchema
milvus_handler = MilvusHandler()
rng = np.random.default_rng()
pk = FieldSchema(
name="pk",
dtype=DataType.VARCHAR,
is_primary=True,
auto_id=False,
max_length=100,
)
bot_id = FieldSchema(name="bot_id", dtype=DataType.VARCHAR, max_length=50)
vector = FieldSchema(name="vector", dtype=DataType.FLOAT_VECTOR, dim=512)
schema = CollectionSchema(
fields=[pk, bot_id, vector],
description="this is test",
)
data = [
{
"pk": str(uuid4()),
"bot_id": str(uuid4()),
# rng.random((1, 512))
"vector": [1.0, 2.0] * 256,
}
]
milvus_handler.drop_collection("test1")
milvus_handler.make_collection("test1", schema)
add_detail = milvus_handler.do_add("test1", data)
print(add_detail)
print(milvus_handler.milvus_client.describe_index("test1", "vector"))
test_data = [[1.0, 2.0] * 256, [100, 400] * 256]
match_result = milvus_handler.match(
"test1", test_data, "vector", ["pk"], 10, "", 0.65
)
print(match_result)
# milvus_handler.primary_field = "pk"
# milvus_handler.delete_doc_by_ids("test1", ["1f764837-b80b-4788-ad8c-7a89924e343b"])
|