from __future__ import annotations import sys sys.path.append("..") import json from abc import ABC, abstractmethod from pathlib import Path from typing import Any, Callable, Dict, List, Mapping, Optional, Set, Union import yaml from pydantic import Field from ....base import BotBase from .formatter import FStringFormatter, JinjiaFormatter from .parser import BaseOutputParser, DictParser, ListParser, StrParser DEFAULT_FORMATTER_MAPPING: Dict[str, Callable] = { "f-string": FStringFormatter(), "jinja2": JinjiaFormatter(), } _OUTPUT_PARSER = { "StrParser": StrParser, "ListParser": ListParser, "DictParser": DictParser, } def check_valid_template( template: str, template_format: str, input_variables: List[str] ) -> None: """Check that template string is valid.""" if template_format not in DEFAULT_FORMATTER_MAPPING: valid_formats = list(DEFAULT_FORMATTER_MAPPING) raise ValueError( f"Invalid template format. Got `{template_format}`;" f" should be one of {valid_formats}" ) try: formatter = DEFAULT_FORMATTER_MAPPING[template_format] formatter.validate(template, input_variables) except KeyError as e: raise ValueError( "Invalid prompt schema; check for mismatched or missing input parameters. " + str(e) ) def _get_jinja2_variables_from_template(template: str) -> Set[str]: try: from jinja2 import Environment, meta except ImportError: raise ImportError( "jinja2 not installed, which is needed to use the jinja2_formatter. " "Please install it with `pip install jinja2`." ) env = Environment() ast = env.parse(template) variables = meta.find_undeclared_variables(ast) return variables class BasePromptTemplate(BotBase, ABC): """Base class for all prompt templates, returning a prompt.""" input_variables: List[str] """A list of the names of the variables the prompt template expects.""" output_parser: Optional[BaseOutputParser] = None """How to parse the output of calling an LLM on this formatted prompt.""" partial_variables: Mapping[str, Union[str, Callable[[], str]]] = Field( default_factory=dict ) class Config: """Configuration for this pydantic object.""" extra = "forbid" arbitrary_types_allowed = True def partial(self, **kwargs: Union[str, Callable[[], str]]) -> BasePromptTemplate: """Return a partial of the prompt template.""" prompt_dict = self.__dict__.copy() prompt_dict["input_variables"] = list( set(self.input_variables).difference(kwargs) ) prompt_dict["partial_variables"] = {**self.partial_variables, **kwargs} return type(self)(**prompt_dict) def _merge_partial_and_user_variables(self, **kwargs: Any) -> Dict[str, Any]: # Get partial params: partial_kwargs = { k: v if isinstance(v, str) else v() for k, v in self.partial_variables.items() } return {**partial_kwargs, **kwargs} @abstractmethod def format(self, **kwargs: Any) -> str: """Format the prompt with the inputs. Args: kwargs: Any arguments to be passed to the prompt template. Returns: A formatted string. Example: .. code-block:: python prompt.format(variable1="foo") """ def save(self, file_path: Union[Path, str]) -> None: """Save the prompt. Args: file_path: Path to directory to save prompt to. Example: .. code-block:: python prompt.save(file_path="path/prompt.yaml") """ if self.partial_variables: raise ValueError("Cannot save prompt with partial variables.") # Convert file to Path object. if isinstance(file_path, str): save_path = Path(file_path) else: save_path = file_path directory_path = save_path.parent directory_path.mkdir(parents=True, exist_ok=True) # Fetch dictionary to save prompt_dict = self.dict() if save_path.suffix == ".json": with open(file_path, "w") as f: json.dump(prompt_dict, f, indent=4) elif save_path.suffix == ".yaml": with open(file_path, "w") as f: yaml.dump(prompt_dict, f, default_flow_style=False) else: raise ValueError(f"{save_path} must be json or yaml") @classmethod @abstractmethod def from_template(cls, template: str, **kwargs: Any) -> BasePromptTemplate: """Create a prompt from a template.""" @classmethod @abstractmethod def from_config(cls, config: Dict) -> BasePromptTemplate: """Create a prompt from config."""