File size: 5,616 Bytes
03418d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da0ad7a
 
03418d9
da0ad7a
 
03418d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da0ad7a
03418d9
 
 
 
 
 
 
 
 
 
 
 
 
 
da0ad7a
03418d9
 
 
 
 
 
 
 
 
 
da0ad7a
 
03418d9
 
 
 
 
53b7de4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import re
import torch
import json_repair
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor
from PIL import Image, ImageDraw

def draw_bbox(image, annotation):
    x1, y1, x2, y2 = annotation["bbox_2d"]
    label = annotation["label"]
    draw = ImageDraw.Draw(image)
    
    # 绘制边界框
    draw.rectangle((x1, y1, x2, y2), outline="red", width=5)
    
    # 绘制标签文本
    font_size = 20
    text_position = (x1, y1 - font_size - 5) if y1 > font_size + 5 else (x1, y2 + 5)
    try:
        draw.text(text_position, label, fill="red", font_size = font_size)
    except Exception as e:
        print(f"文本绘制错误: {e}")
        # 如果默认绘制失败,使用简单的方式绘制文本
        draw.text(text_position, label, fill="red")
    
    return image

def draw_bboxes(image, annotations):
    """绘制多个边界框和标签"""
    result_image = image.copy()
    for annotation in annotations:
        result_image = draw_bbox(result_image, annotation)
    
    return result_image

def extract_bbox_answer(content):
    # Extract content between <answer> and </answer> if present
    answer_matches = re.findall(r'<answer>(.*?)</answer>', content, re.DOTALL)
    if answer_matches:
        # Use the last match
        text = answer_matches[-1]
    else:
        text = content

    # 使用json_repair修复JSON
    try:
        data = json_repair.loads(text)
        if isinstance(data, list) and len(data) > 0:
            return data
        else:
            return []
    except Exception as e:
        print(f"JSON解析错误: {e}")
        return []

import spaces

@spaces.GPU
def process_image_and_text(image, text):
    """Process image and text input, return thinking process and bbox"""
    labels = text.split(",")
    question = f"First thinks about the reasoning process in the mind and then provides the user with the answer. The reasoning process and answer are enclosed within <think> </think> and <answer> </answer> tags, respectively, i.e., <think> reasoning process here </think><answer> answer here </answer>. Please carefully check the image and detect the following objects: {labels}. "
    
    question = question +  "Output the bbox coordinates of detected objects in <answer></answer>. The bbox coordinates in Markdown format should be: \n```json\n[{\"bbox_2d\": [x1, y1, x2, y2], \"label\": \"object name\"}]\n```\n If no targets are detected in the image, simply respond with \"None\"."
    print("question: ", question)
    
    messages = [
        {
            "role": "user",
            "content": [
                {"type": "image"},
                {"type": "text", "text": question},
            ],
        }
    ]
    
    text = processor.apply_chat_template(
        messages, tokenize=False, add_generation_prompt=True
    )

    inputs = processor(
        text=[text],
        images=image,
        return_tensors="pt",
        padding=True,
        padding_side="left",
        add_special_tokens=False,
    )

    inputs = inputs.to("cuda")

    with torch.no_grad():
        generated_ids = model.generate(**inputs, use_cache=True, max_new_tokens=1024, do_sample=False)
        generated_ids_trimmed = [
            out_ids[len(inputs.input_ids[0]):] for out_ids in generated_ids
        ]
    
    output_text = processor.batch_decode(
        generated_ids_trimmed, skip_special_tokens=True
    )[0]
    print("output_text: ", output_text)

    # Extract thinking process
    think_match = re.search(r'<think>(.*?)</think>', output_text, re.DOTALL)
    thinking_process = think_match.group(1).strip() if think_match else "No thinking process found"
    
    answer_match = re.search(r'<answer>(.*?)</answer>', output_text, re.DOTALL)
    answer_output = answer_match.group(1).strip() if answer_match else "No answer extracted"

    # Get bbox and draw
    bbox = extract_bbox_answer(output_text)
    
    # Draw bbox on the image
    result_image = image.copy()
    result_image = draw_bboxes(result_image, bbox)
    
    return thinking_process, answer_output,result_image

if __name__ == "__main__":
    import gradio as gr
    
    model_path = "omlab/VLM-R1-Qwen2.5VL-3B-OVD-0321"
    # device = "cuda" if torch.cuda.is_available() else "cpu"
    device = "cuda"
    model = Qwen2_5_VLForConditionalGeneration.from_pretrained(model_path, torch_dtype=torch.float16)
    model.to(device)
    processor = AutoProcessor.from_pretrained(model_path)
    
    def gradio_interface(image, text):
        thinking, output,result_image = process_image_and_text(image, text)
        return thinking, output, result_image
    
    demo = gr.Interface(
        fn=gradio_interface,
        inputs=[
            gr.Image(type="pil", label="Input Image"),
            gr.Textbox(label="Objects to detect (separated by ,)")
        ],
        outputs=[
            gr.Textbox(label="Thinking Process"),
            gr.Textbox(label="Response"),
            gr.Image(type="pil", label="Result with Bbox")
        ],
        title="Open-Vocabulary Object Detection Demo",
        description="Upload an image and input description text, the system will return the thinking process and region annotation. \n\nOur GitHub: [VLM-R1](https://github.com/om-ai-lab/VLM-R1/tree/main)",
        examples=[
            ["examples/image1.jpg", "person"],
            ["examples/image2.jpg", "drink,fruit"],
            ["examples/image3.png", "keyboard,white cup,laptop"],
        ],
        cache_examples=False,
        examples_per_page=10
    )
    
    demo.launch(server_name="0.0.0.0", server_port=7860, share=True)