Spaces:
Running
Running
import pandas as pd | |
import json | |
from datetime import datetime | |
def process_csv_to_json(): | |
# Read the CSV file | |
df = pd.read_csv('src/record.csv') | |
# Clean the data: remove empty rows, rename columns | |
df = df.dropna(how='all') | |
df = df.rename(columns={ | |
'dataset': 'Dataset', | |
'llm': 'LLM', | |
'score\n(EM)': 'Score', | |
'pass rate': 'Pass rate', | |
'Cost($)': 'Cost($)', | |
'Eval Date': 'Eval Date', | |
'framework': 'Framework', | |
'X-shot': 'X-shot', | |
'Nums': 'Samples', | |
'All tokens': 'All tokens', | |
'Total input tokens': 'Total input tokens', | |
'Average input tokens': 'Average input tokens', | |
'Total output tokens': 'Total output tokens', | |
'Average output tokens': 'Average output tokens' | |
}) | |
# Helper function: handle number strings with commas | |
def parse_number(value): | |
if pd.isna(value) or value == '-': | |
return 0 | |
# Remove commas, convert to float, then to int | |
return int(float(str(value).replace(',', ''))) | |
# Initialize result dictionary | |
result = { | |
"time": datetime.now().strftime("%Y-%m-%d %H:%M:%S"), | |
"results": {} | |
} | |
# Get all unique LLMs | |
llms = df['LLM'].dropna().unique() | |
# Iterate through each algorithm | |
for algorithm in df['Algorithm'].dropna().unique(): | |
if not isinstance(algorithm, str): | |
continue | |
result['results'][algorithm] = {} | |
# Process each LLM | |
for llm in llms: | |
llm_data = df[(df['Algorithm'] == algorithm) & (df['LLM'] == llm)] | |
if llm_data.empty: | |
continue | |
# Create dictionary for each LLM | |
result['results'][algorithm][llm] = { | |
'META': { | |
'Algorithm': str(algorithm), | |
'LLM': str(llm), | |
'Eval Date': str(llm_data['Eval Date'].iloc[0]) | |
} | |
} | |
# Process each dataset | |
for dataset in df['Dataset'].dropna().unique(): | |
if not isinstance(dataset, str): | |
continue | |
dataset_data = llm_data[llm_data['Dataset'] == dataset] | |
if not dataset_data.empty: | |
data_row = dataset_data.iloc[0] | |
result['results'][algorithm][llm][dataset] = { | |
'Score': round(float(data_row['Score']) if data_row['Score'] != '-' else 0, 2), # Keep two decimal places | |
'Pass rate': round(float(data_row['Pass rate']) / 100, 4) if data_row['Pass rate'] != '-' else 0.0, # Convert to decimal and keep two decimal places | |
'Cost($)': float(data_row['Cost($)']) if pd.notnull(data_row['Cost($)']) and data_row['Cost($)'] != '-' else 0.0, | |
'Framework': str(data_row['Framework']) if 'Framework' in data_row and pd.notnull(data_row['Framework']) else '', | |
'X-shot': str(data_row['X-shot']) if pd.notnull(data_row['X-shot']) else '', | |
'Samples': parse_number(data_row['Samples']), | |
'All tokens': parse_number(data_row['All tokens']), | |
'Total input tokens': parse_number(data_row['Total input tokens']), | |
'Average input tokens': parse_number(data_row['Average input tokens']), | |
'Total output tokens': parse_number(data_row['Total output tokens']), | |
'Average output tokens': parse_number(data_row['Average output tokens']) | |
} | |
# Check if each field exists | |
required_fields = ['Score', 'Pass rate', 'Cost($)', 'Framework', 'X-shot', 'Samples', 'All tokens', 'Total input tokens', 'Average input tokens', 'Total output tokens', 'Average output tokens'] | |
for key, value in result['results'].items(): | |
for llm, datasets in value.items(): | |
# Check META information | |
meta = datasets.get('META', {}) | |
if 'LLM' not in meta or 'Eval Date' not in meta: | |
print(f"Missing META fields in algorithm '{key}' for LLM '{llm}'") | |
for dataset, data in datasets.items(): | |
if dataset == 'META': | |
continue | |
missing_fields = [field for field in required_fields if field not in data] | |
if missing_fields: | |
print(f"Missing fields {missing_fields} in dataset '{dataset}' for LLM '{llm}' in algorithm '{key}'") | |
# Save as JSON file | |
with open('src/detail_math_score.json', 'w', encoding='utf-8') as f: | |
json.dump(result, f, indent=4, ensure_ascii=False) | |
def process_csv_to_overall_json(): | |
# Read the CSV file | |
df = pd.read_csv('src/record.csv') | |
# Clean the data: remove empty rows, rename columns | |
df = df.dropna(how='all') | |
df = df.rename(columns={ | |
'dataset': 'Dataset', | |
'llm': 'LLM', | |
'score\n(EM)': 'Score', | |
'Cost($)': 'Cost($)', | |
'Eval Date': 'Eval Date' | |
}) | |
# Initialize result dictionary | |
result = { | |
"time": datetime.now().strftime("%Y-%m-%d %H:%M:%S"), | |
"results": {} | |
} | |
# Get all unique LLMs | |
llms = df['LLM'].dropna().unique() | |
for llm in llms: | |
# Process base algorithms | |
for algorithm in df['Algorithm'].dropna().unique(): | |
if not isinstance(algorithm, str): | |
continue | |
# Add suffix for non-gpt-3.5-turbo models | |
# Modification: add more information for llama models to ensure uniqueness | |
algo_key = algorithm if llm == 'gpt-3.5-turbo' else f"{algorithm}-{llm}" | |
# Check if the algorithm-LLM combination exists | |
algo_data = df[(df['Algorithm'] == algorithm) & (df['LLM'] == llm)] | |
if algo_data.empty: | |
print(f"No data found for algorithm '{algorithm}' and LLM '{llm}'") | |
continue | |
result['results'][algo_key] = { | |
"META": { | |
"Algorithm": algorithm, | |
"LLM": llm, | |
"Eval Date": str(algo_data['Eval Date'].iloc[0]) | |
} | |
} | |
# Process each dataset | |
for dataset in ['gsm8k', 'AQuA', 'MATH-500']: | |
dataset_data = df[(df['Algorithm'] == algorithm) & | |
(df['Dataset'] == dataset) & | |
(df['LLM'] == llm)] | |
if not dataset_data.empty: | |
result['results'][algo_key][dataset] = { | |
"Score": float(dataset_data['Score'].iloc[0]) if pd.notnull(dataset_data['Score'].iloc[0]) and dataset_data['Score'].iloc[0] != '-' else 0.0, | |
"Cost($)": float(dataset_data['Cost($)'].iloc[0]) if pd.notnull(dataset_data['Cost($)'].iloc[0]) and dataset_data['Cost($)'].iloc[0] != '-' else 0.0 | |
} | |
else: | |
# If the dataset is empty, ensure the key exists and set default values | |
result['results'][algo_key][dataset] = { | |
"Score": 0.0, | |
"Cost($)": 0.0 | |
} | |
# Save as JSON file | |
with open('src/overall_math_score.json', 'w', encoding='utf-8') as f: | |
json.dump(result, f, indent=4, ensure_ascii=False) | |
if __name__ == "__main__": | |
# Generate JSON files in two formats | |
process_csv_to_json() | |
process_csv_to_overall_json() |