Spaces:
Build error
Build error
import gradio as gr | |
import torch | |
import random | |
import whisper | |
import re | |
from nemo.collections.asr.models import EncDecSpeakerLabelModel | |
# from transformers import Wav2Vec2Processor, Wav2Vec2Tokenizer | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
def audio_to_text(audio): | |
model = whisper.load_model("base.en") | |
audio = whisper.load_audio(audio) | |
result = model.transcribe(audio) | |
return result["text"] | |
random_sentences = [ | |
"the keep brown", | |
"jump over table", | |
"green mango fruit", | |
"how much money", | |
"please audio speaker", | |
"nothing is better", | |
"garden banana orange", | |
"tiger animal king", | |
"laptop mouse monitor" | |
] | |
additional_random_sentences = [ | |
"sunrise over mountains" | |
"whispering gentle breeze" | |
"garden of roses" | |
"melodies in rain" | |
"laughing with friends" | |
"silent midnight moon" | |
"skipping in meadow" | |
"ocean waves crashing" | |
"exploring hidden caves" | |
"serenading under stars" | |
] | |
# Define a Gradio interface with text inputs for both speakers | |
def get_random_sentence(): | |
return random.choice(random_sentences) | |
text_inputs = [ | |
gr.inputs.Textbox(label="Speak the Words given below:", default=get_random_sentence, lines=1), | |
] | |
STYLE = """ | |
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/css/bootstrap.min.css" integrity="sha256-YvdLHPgkqJ8DVUxjjnGVlMMJtNimJ6dYkowFFvp4kKs=" crossorigin="anonymous"> | |
""" | |
OUTPUT_ERROR = ( | |
STYLE | |
+ """ | |
<div class="container"> | |
<div class="row"><h1 style="text-align: center">Spoken Words Did Not Match to the OTP, </h1></div> | |
<div class="row"><h1 class="text-danger" style="text-align: center">Please Speak Clearly!!!!</h1></div> | |
<div class="row"><h1 class="display-1 text-success" style="text-align: center">Words Spoken 1: {}</h1></div> | |
<div class="row"><h1 class="display-1 text-success" style="text-align: center">Words Spoken 2: {}</h1></div> | |
</div> | |
""" | |
) | |
OUTPUT_OK = ( | |
STYLE | |
+ """ | |
<div class="container"> | |
<div class="row"><h1 style="text-align: center">The provided samples are</h1></div> | |
<div class="row"><h1 class="text-success" style="text-align: center">Same Speakers!!!</h1></div> | |
<div class="row"><h1 class="text-success" style="text-align: center">Authentication Successfull!!!</h1></div> | |
</div> | |
""" | |
) | |
OUTPUT_FAIL = ( | |
STYLE | |
+ """ | |
<div class="container"> | |
<div class="row"><h1 style="text-align: center">The provided samples are from </h1></div> | |
<div class="row"><h1 class="text-danger" style="text-align: center">Different Speakers!!!</h1></div> | |
<div class="row"><h1 class="text-danger" style="text-align: center">Authentication Failed!!!</h1></div> | |
</div> | |
""" | |
) | |
THRESHOLD = 0.80 | |
model_name = "nvidia/speakerverification_en_titanet_large" | |
model = EncDecSpeakerLabelModel.from_pretrained(model_name).to(device) | |
def clean_sentence(sentence): | |
# Remove commas and full stops using regular expression | |
cleaned_sentence = re.sub(r'[,.?!]', '', sentence) | |
# Convert the sentence to lowercase | |
cleaned_sentence = cleaned_sentence.lower() | |
cleaned_sentence = cleaned_sentence.strip() | |
return cleaned_sentence | |
def compare_samples(text, path1, path2): | |
if not (path1 and path2): | |
return '<b style="color:red">ERROR: Please record audio for *both* speakers!</b>' | |
cls1 = audio_to_text(path1) | |
cls2 = audio_to_text(path2) | |
myText = clean_sentence(text) | |
Spoken1 = clean_sentence(cls1) | |
Spoken2 = clean_sentence(cls2) | |
print("OTP Given:", myText) | |
print("Spoken 1:", Spoken1) | |
print("Spoken 2:", Spoken2) | |
if Spoken1 == Spoken2 == myText: | |
embs1 = model.get_embedding(path1).squeeze() | |
embs2 = model.get_embedding(path2).squeeze() | |
# Length Normalize | |
X = embs1 / torch.linalg.norm(embs1) | |
Y = embs2 / torch.linalg.norm(embs2) | |
# Score | |
similarity_score = torch.dot(X, Y) / ((torch.dot(X, X) * torch.dot(Y, Y)) ** 0.5) | |
similarity_score = (similarity_score + 1) / 2 | |
# Decision | |
if similarity_score >= THRESHOLD: | |
return OUTPUT_OK | |
else: | |
return OUTPUT_FAIL | |
else: | |
return OUTPUT_ERROR.format(Spoken1, Spoken2) | |
# | |
# def compare_samples1(path1, path2): | |
# if not (path1 and path2): | |
# return '<b style="color:red">ERROR: Please record audio for *both* speakers!</b>' | |
# | |
# embs1 = model.get_embedding(path1).squeeze() | |
# embs2 = model.get_embedding(path2).squeeze() | |
# | |
# # Length Normalize | |
# X = embs1 / torch.linalg.norm(embs1) | |
# Y = embs2 / torch.linalg.norm(embs2) | |
# | |
# # Score | |
# similarity_score = torch.dot(X, Y) / ((torch.dot(X, X) * torch.dot(Y, Y)) ** 0.5) | |
# similarity_score = (similarity_score + 1) / 2 | |
# | |
# # Decision | |
# if similarity_score >= THRESHOLD: | |
# return OUTPUT_OK.format(similarity_score * 100) | |
# else: | |
# return OUTPUT_FAIL.format(similarity_score * 100) | |
inputs = [ | |
*text_inputs, | |
gr.inputs.Audio(source="microphone", type="filepath", optional=True, label="Speaker #1"), | |
gr.inputs.Audio(source="microphone", type="filepath", optional=True, label="Speaker #2"), | |
] | |
# upload_inputs = [ | |
# gr.inputs.Audio(source="upload", type="filepath", optional=True, label="Speaker #1"), | |
# gr.inputs.Audio(source="upload", type="filepath", optional=True, label="Speaker #2"), | |
# ] | |
description = ( | |
"Compare two speech samples and determine if they are from the same speaker." | |
) | |
microphone_interface = gr.Interface( | |
fn=compare_samples, | |
inputs=inputs, | |
outputs=gr.outputs.HTML(label=""), | |
title="Speaker Verification", | |
description=description, | |
layout="horizontal", | |
theme="huggingface", | |
allow_flagging=False, | |
live=False, | |
) | |
# upload_interface = gr.Interface( | |
# fn=compare_samples1, | |
# inputs=upload_inputs, | |
# outputs=gr.outputs.HTML(label=""), | |
# title="Speaker Verification", | |
# description=description, | |
# layout="horizontal", | |
# theme="huggingface", | |
# allow_flagging=False, | |
# live=False, | |
# ) | |
demo = gr.TabbedInterface([microphone_interface, ], ["Microphone", ]) | |
# demo = gr.TabbedInterface([microphone_interface, upload_interface], ["Microphone", "Upload File"]) | |
demo.launch(enable_queue=True, share=True) |