Spaces:
Running
Running
File size: 6,169 Bytes
b39afbe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
/**
* Copyright (c) 2023 MERCENARIES.AI PTE. LTD.
* All rights reserved.
*/
import {
Configuration,
OpenAIApi,
ChatCompletionRequestMessage,
CreateChatCompletionRequest,
ConfigurationParameters,
} from "openai";
import type { IncomingMessage } from "http";
import { createParser } from "eventsource-parser";
import { BaseLLMParams, LLM } from "langchain/llms";
interface ModelParams {
/** Sampling temperature to use, between 0 and 2, defaults to 1 */
temperature: number;
/** Total probability mass of tokens to consider at each step, between 0 and 1, defaults to 1 */
topP: number;
/** Penalizes repeated tokens according to frequency */
frequencyPenalty: number;
/** Penalizes repeated tokens */
presencePenalty: number;
/** Number of chat completions to generate for each prompt */
n: number;
/** Dictionary used to adjust the probability of specific tokens being generated */
logitBias?: Record<string, number>;
/** Whether to stream the results or not */
app: any
}
/**
* Input to OpenAI class.
* @augments ModelParams
*/
interface OpenAIInput extends ModelParams {
/** Model name to use */
modelName: string;
/** ChatGPT messages to pass as a prefix to the prompt */
prefixMessages?: ChatCompletionRequestMessage[];
/** Holds any additional parameters that are valid to pass to {@link
* https://platform.openai.com/docs/api-reference/completions/create |
* `openai.create`} that are not explicitly specified on this class.
*/
modelKwargs?: Kwargs;
/** List of stop words to use when generating */
stop?: string[];
/**
* Maximum number of tokens to generate in the completion. If not specified,
* defaults to the maximum number of tokens allowed by the model.
*/
maxTokens?: number;
}
// eslint-disable-next-line @typescript-eslint/no-explicit-any
type Kwargs = Record<string, any>;
/**
* Wrapper around OpenAI large language models that use the Chat endpoint.
*
* To use you should have the `openai` package installed, with the
* `OPENAI_API_KEY` environment variable set.
*
* @remarks
* Any parameters that are valid to be passed to {@link
* https://platform.openai.com/docs/api-reference/chat/create |
* `openai.createCompletion`} can be passed through {@link modelKwargs}, even
* if not explicitly available on this class.
*
* @augments BaseLLM
* @augments OpenAIInput
*/
export class OpenAIChat extends LLM implements OpenAIInput {
temperature = 1;
topP = 1;
frequencyPenalty = 0;
presencePenalty = 0;
n = 1;
logitBias?: Record<string, number>;
maxTokens?: number;
modelName = "gpt-3.5-turbo";
app: any
prefixMessages?: ChatCompletionRequestMessage[];
modelKwargs?: Kwargs;
stop?: string[];
private clientConfig: ConfigurationParameters;
constructor(
fields?: Partial<OpenAIInput> &
BaseLLMParams & {
openAIApiKey?: string;
},
configuration?: ConfigurationParameters
) {
super(fields ?? {});
this.modelName = fields?.modelName ?? this.modelName;
this.prefixMessages = fields?.prefixMessages ?? this.prefixMessages;
this.modelKwargs = fields?.modelKwargs ?? {};
this.temperature = fields?.temperature ?? this.temperature;
this.topP = fields?.topP ?? this.topP;
this.frequencyPenalty = fields?.frequencyPenalty ?? this.frequencyPenalty;
this.presencePenalty = fields?.presencePenalty ?? this.presencePenalty;
this.n = fields?.n ?? this.n;
this.logitBias = fields?.logitBias;
this.maxTokens = fields?.maxTokens;
this.stop = fields?.stop;
this.app = fields?.app;
this.clientConfig = {
...configuration,
};
}
/**
* Get the parameters used to invoke the model
*/
invocationParams(): Omit<CreateChatCompletionRequest, "messages"> & Kwargs {
return {
model: this.modelName,
temperature: this.temperature,
top_p: this.topP,
frequency_penalty: this.frequencyPenalty,
presence_penalty: this.presencePenalty,
n: this.n,
logit_bias: this.logitBias,
max_tokens: this.maxTokens,
stop: this.stop,
...this.modelKwargs,
};
}
_identifyingParams() {
return {
model_name: this.modelName,
...this.invocationParams(),
...this.clientConfig,
};
}
/**
* Get the identifying parameters for the model
*/
identifyingParams() {
return {
model_name: this.modelName,
...this.invocationParams(),
...this.clientConfig,
};
}
private formatMessages(prompt: string): ChatCompletionRequestMessage[] {
const message: ChatCompletionRequestMessage = {
role: "user",
content: prompt,
};
return this.prefixMessages ? [...this.prefixMessages, message] : [message];
}
/**
* Call out to OpenAI's endpoint with k unique prompts
*
* @param prompt - The prompt to pass into the model.
* @param [stop] - Optional list of stop words to use when generating.
*
* @returns The full LLM output.
*
* @example
* ```ts
* import { OpenAI } from "langchain/llms";
* const openai = new OpenAI();
* const response = await openai.generate(["Tell me a joke."]);
* ```
*/
async _call(prompt: string, stop?: string[]): Promise<string> {
if (this.stop && stop) {
throw new Error("Stop found in input and default params");
}
const params = this.invocationParams();
params.stop = stop ?? params.stop;
const response = await this.app.api2.openai.createChatCompletion({...params, messages: this.formatMessages(prompt)})
let completion = response.choices[0].message?.content ?? "";
return completion;
}
_llmType() {
return "openai";
}
}
/*
async _call(prompt: string, _stop?: string[]): Promise<string> {
//@ts-ignore
// Hit the `generate` endpoint on the `large` model
const generateResponse = await this.app.api2.openai.createChatCompletion({model: 'gpt-3.5-turbo', messages:[{ role: "user", content: prompt }]})
try {
return generateResponse;
} catch {
omnilog.log(generateResponse);
throw new Error("Could not parse response.");
}
}
}*/ |