File size: 5,685 Bytes
b39afbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
/**
 * Copyright (c) 2023 MERCENARIES.AI PTE. LTD.
 * All rights reserved.
 */

//@ts-check
import { runBlock } from './blocks.js';
import { Llm, fixJsonString, generateModelId, deduceLlmTitle, deduceLlmDescription } from './llm.js';
import { is_valid, clean_string } from './utils.js';
import { Tokenizer_Openai } from './tokenizer_Openai.js';

const LLM_PROVIDER_OPENAI_SERVER = 'openai'; // we may need to support Azure and other providers (e.g. Poe)
const LLM_MODEL_TYPE_OPENAI = 'openai';
const BLOCK_OPENAI_ADVANCED_CHATGPT = 'openai.advancedChatGPT';
const LLM_CONTEXT_SIZE_MARGIN = 500;
const GPT3_MODEL_SMALL = 'gpt-3.5-turbo';
const GPT3_MODEL_LARGE = 'gpt-3.5-turbo-16k';
const GPT4_MODEL_SMALL = 'gpt-4';
const GPT4_MODEL_LARGE = 'gpt-4-32k';
const GPT3_MODEL_PREVIEW = 'gpt-3.5-turbo-1106';
const GPT4_MODEL_PREVIEW= 'gpt-4-1106-preview';

const GPT4_SIZE_CUTOFF = 8192 - LLM_CONTEXT_SIZE_MARGIN;

const ICON_OPENAI = '💰';
const llm_openai_models = [
  {
    model_name: GPT3_MODEL_SMALL,
    model_type: LLM_MODEL_TYPE_OPENAI,
    context_size: 4096,
    provider: LLM_PROVIDER_OPENAI_SERVER
  },
  {
    model_name: GPT3_MODEL_LARGE,
    model_type: LLM_MODEL_TYPE_OPENAI,
    context_size: 16385,
    provider: LLM_PROVIDER_OPENAI_SERVER
  },
  {
    model_name: GPT4_MODEL_SMALL,
    model_type: LLM_MODEL_TYPE_OPENAI,
    context_size: 8192,
    provider: LLM_PROVIDER_OPENAI_SERVER
  },
  {
    model_name: GPT4_MODEL_LARGE,
    model_type: LLM_MODEL_TYPE_OPENAI,
    context_size: 32768,
    provider: LLM_PROVIDER_OPENAI_SERVER
  },
  {
    model_name: GPT3_MODEL_PREVIEW,
    model_type: LLM_MODEL_TYPE_OPENAI,
    context_size: 16385,
    provider: LLM_PROVIDER_OPENAI_SERVER
  },
  {
    model_name: GPT4_MODEL_PREVIEW,
    model_type: LLM_MODEL_TYPE_OPENAI,
    context_size: 128000,
    provider: LLM_PROVIDER_OPENAI_SERVER
  }
];

class Llm_Openai extends Llm {
  constructor() {
    const tokenizer_Openai = new Tokenizer_Openai();
    super(tokenizer_Openai);
    // @ts-ignore
    this.context_sizes[GPT3_MODEL_SMALL] = 4096;
    // @ts-ignore
    this.context_sizes[GPT3_MODEL_LARGE] = 16385;
    // @ts-ignore
    this.context_sizes[GPT4_MODEL_SMALL] = 8192;
    // @ts-ignore
    this.context_sizes[GPT4_MODEL_LARGE] = 32768;
    // @ts-ignore
    this.context_sizes[GPT3_MODEL_PREVIEW] = 16385;
    // @ts-ignore
    this.context_sizes[GPT4_MODEL_PREVIEW] = 128000;
    
  }

  // -----------------------------------------------------------------------
  /**
   * @param {any} ctx
   * @param {string} prompt
   * @param {string} instruction
   * @param {string} model_name
   * @param {number} [temperature=0]
   * @param {any} [args=null]
   * @returns {Promise<{ answer_text: string; answer_json: any; }>}
   */
  async query(ctx, prompt, instruction, model_name, temperature = 0, args = null) {
    const block_args = { ...args };
    block_args.user = ctx.userId;
    if (prompt !== '') block_args.prompt = prompt;
    if (instruction !== '') block_args.instruction = instruction;
    block_args.temperature = temperature;
    block_args.model = model_name;

    const response = await this.runLlmBlock(ctx, block_args);
    if (response.error) throw new Error(response.error);

    const total_tokens = response?.usage?.total_tokens || 0;
    let answer_text = response?.answer_text || '';
    const function_arguments_string = response?.function_arguments_string || '';
    let function_arguments = null;

    if (is_valid(function_arguments_string)) function_arguments = await fixJsonString(ctx, function_arguments_string);
    if (is_valid(answer_text)) answer_text = clean_string(answer_text);

    const answer_json = {};
    answer_json.function_arguments_string = function_arguments_string;
    answer_json.function_arguments = function_arguments;
    answer_json.total_tokens = total_tokens;
    answer_json.answer_text = answer_text;

    const return_value = {
      answer_text,
      answer_json
    };

    return return_value;
  }

  getProvider() {
    return LLM_PROVIDER_OPENAI_SERVER;
  }

  getModelType() {
    return LLM_MODEL_TYPE_OPENAI;
  }

  // @ts-ignore
  async getModelChoices(choices, llm_model_types, llm_context_sizes) {
    const models = Object.values(llm_openai_models);
    for (const model of models) {
      const model_name = model.model_name;
      const provider = model.provider;
      const model_id = generateModelId(model_name, provider);

      // @ts-ignore
      const title = model.title || deduceLlmTitle(model_name, provider, ICON_OPENAI);
      // @ts-ignore
      const description = model.description || deduceLlmDescription(model_name, model.context_size);

      // @ts-ignore
      llm_model_types[model_name] = model.type;
      llm_context_sizes[model_name] = model.context_size;

      const choice = { value: model_id, title, description };
      choices.push(choice);
    }
  }

  // @ts-ignore
  async runLlmBlock(ctx, args) {
    // TBD ensure all the runLLM blocks have the same exact response format
    // or clean it up here for openai

    const prompt = args.prompt;
    const instruction = args.instruction;
    const model = args.model;

    const prompt_cost = this.tokenizer.countTextTokens(prompt);
    const instruction_cost = this.tokenizer.countTextTokens(instruction);
    const cost = prompt_cost + instruction_cost;

    let response = null;
    try {
      response = await runBlock(ctx, BLOCK_OPENAI_ADVANCED_CHATGPT, args);
    } catch (err) {
      // @ts-ignore
      const error_message = `Error running openai.advancedChatGPT: ${err.message}`;
      console.error(error_message);
      throw err;
    }
    return response;
  }
}

export { Llm_Openai };