File size: 8,904 Bytes
5586f24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
import os
import operator
import glob
import librosa
import argparse
import hashlib
import gradio as gr
import numpy as np
import pickle

from tqdm import tqdm
from modelscope.pipelines import pipeline
from download_audios import download_audios

"""

Audio Speaker needle in haystack
cronrpc
https://github.com/cronrpc

"""

MAX_DISPLAY_AUDIO_NUMBER = 10
g_gr_audio_list = []


class Speaker_Needle_In_Haystack():
    SAMPLE_RATE = 16000 

    def __init__(self, pickle_support = False) -> None:
        self._load_model()
        self.all_embs = {}
        self.cosine_score = {}
        self.pickle_support = pickle_support
        pass

    def set_audio_list_dir(self, dir_path):
        self.audio_list_dir = dir_path

    def _load_model(self) -> None:
        # could switch model here 

        self.model_name = 'damo/speech_eres2netv2_sv_zh-cn_16k-common'
        self.sv_pipline = pipeline(
            task='speaker-verification',
            model=self.model_name,
            model_revision='v1.0.1'
        )

        # self.model_name = 'iic/speech_campplus_sv_zh-cn_3dspeaker_16k'
        # self.sv_pipline = pipeline(
        #     task='speaker-verification',
        #     model=self.model_name
        # )

    def _get_emb(self, audio) -> None:
        if isinstance(audio, str):
            audio, sr = librosa.load(audio, sr=self.SAMPLE_RATE, mono=True)
            return self.sv_pipline([audio], output_emb=True)['embs'] # (1,196) np array
        elif isinstance(audio, list):
            return self.sv_pipline(audio, output_emb=True)['embs'] # (n,196) np array
        else:
            return self.sv_pipline([audio], output_emb=True)['embs'] # (1,196) np array

    def _cosine_similarity_compute(self, emb1, emb2):
        emb1 = np.squeeze(emb1)
        emb2 = np.squeeze(emb2)
        dot_product = np.dot(emb1, emb2)
        norm_vector1 = np.linalg.norm(emb1)
        norm_vector2 = np.linalg.norm(emb2)
        cosine_similarity = dot_product / (norm_vector1 * norm_vector2)
        return cosine_similarity

    def compute_all_embs(self, batch_size=1):
        wav_files = sorted(glob.glob(os.path.join(self.audio_list_dir, '*.wav')))

        # hash to skip
        file_string = self.model_name + ''.join(wav_files)
        hash_file = hashlib.sha256(file_string.encode()).hexdigest()[:15] + ".pkl"
        if self.pickle_support:
            cache_dir = os.path.join('cache','embs_cache')
            os.makedirs(cache_dir, exist_ok=True)
            hash_file = os.path.join(cache_dir, hash_file)
            if os.path.exists(hash_file):
                print("load pickle embs")
                self.load_all_embs(hash_file)
                return

        self.all_embs = {}
        num_files = len(wav_files)
        num_batches = (num_files + batch_size - 1) // batch_size

        for batch_idx in tqdm(range(num_batches)):
            start_idx = batch_idx * batch_size
            end_idx = min((batch_idx + 1) * batch_size, num_files)
            batch_files = wav_files[start_idx:end_idx]
            batch_audio = []

            for file_path in batch_files:
                audio, sr = librosa.load(file_path, sr=self.SAMPLE_RATE, mono=True)
                batch_audio.append(audio)

            embs = self._get_emb(batch_audio)

            for i, file_path in enumerate(batch_files):
                self.all_embs[file_path] = embs[i]

        # save the self.all_embs in hash_value named file
        if self.pickle_support:
            self.save_all_embs(hash_file)

    def compute_target_aduio_cosine_score(self, target_audio):
        self.cosine_score = {}
        target_emb = self._get_emb(target_audio)
        for file_path, emb in self.all_embs.items():
            self.cosine_score[file_path] = self._cosine_similarity_compute(target_emb, emb)

    def get_cosine_next_top_k(self, k, start = 0):
        top_subset = sorted(self.cosine_score.items(), key=operator.itemgetter(1), reverse=True)[start: start + k]
        return top_subset
    
    def save_all_embs(self, hash_file):
        file_path = hash_file
        with open(file_path, 'wb') as file:
            pickle.dump(self.all_embs, file)

    def load_all_embs(self, hash_file):
        file_path = hash_file
        with open(file_path, 'rb') as file:
            self.all_embs = pickle.load(file)


def get_similar_score_audio(audio, start_index):
    output = []
    top_subset = []
    
    if audio != None:
        sr, y = audio
        if len(y.shape) == 2:
            y = np.mean(y, axis=-1)
        audio_16k = librosa.resample(y.astype(np.float32), orig_sr=sr, target_sr=snih.SAMPLE_RATE)
        snih.compute_target_aduio_cosine_score(audio_16k)
        top_subset = snih.get_cosine_next_top_k(MAX_DISPLAY_AUDIO_NUMBER, start=start_index)

    for i in range(0, len(top_subset)):
        path, score = top_subset[i]
        file_name = os.path.basename(path)
        output.append(
            {
                "__type__":"update",
                "value":path,
                "label":f"{start_index+i}:{file_name} score={score:.4f}"
            }
        )

    for _ in range(0, MAX_DISPLAY_AUDIO_NUMBER - len(top_subset)):
        output.append(
            {
                "__type__":"update",
                "value":None,
                "label":"None"
            }
        )

    return *output, start_index


def get_next_index_zero(audio):
    return get_similar_score_audio(audio, 0)


def get_next_index(audio, start_index):
    return get_similar_score_audio(audio, start_index + 10)


def get_previous_index(audio, start_index):
    return get_similar_score_audio(audio, max(start_index - 10, 0))


if __name__ == '__main__':

    download_audios()
    
    parser = argparse.ArgumentParser(description='Speaker_Needle_In_Haystack demo Launch')
    parser.add_argument('--server_name', type=str, default='0.0.0.0', help='Server name')
    parser.add_argument('--server_port', type=int, default=8080, help='Server port')
    parser.add_argument('--batch_size', type=int, default=4, help='the batch_size about embedding generate')
    parser.add_argument('--audio_dir', type=str, default="audios", help='the audio dir which will be compared to target audio')
    parser.add_argument('--disable_pickle_support', action='store_true', help="save emb by pickle")
    args = parser.parse_args()

    pickle_support = not args.disable_pickle_support
    print("pickle support : ", pickle_support)
    snih = Speaker_Needle_In_Haystack(pickle_support=pickle_support)

    snih.set_audio_list_dir(args.audio_dir)
    snih.compute_all_embs(batch_size = args.batch_size)

    with gr.Blocks() as demo:
        gr.Markdown("# 大海捞针 Audio Needle In Haystack")
        with gr.Row():
            audio_input = gr.Audio(
                    label= "Input Audio / 输入音频",
                    visible = True,
                    scale=5,
                    type="numpy",
                    format='wav'
                )
            
            with gr.Column():
                wav_files = sorted(glob.glob(os.path.join("examples", '*.wav')))
                gr.Examples(
                    examples=[
                        *wav_files
                    ],
                    inputs=[
                        audio_input
                    ]
                )
                input_index =  gr.Number(value=0, label="Index")

            btn_get_similar = gr.Button("获取相似音频 Get Similar Score Audio")
            btn_get_previous_index = gr.Button("上一页 Previous Index")
            btn_get_next_index = gr.Button("下一页 Next Index")

        
        gr.Markdown("# 相似音频 similar audio")

        with gr.Column():
            for _ in range(0,MAX_DISPLAY_AUDIO_NUMBER):
                audio_output = gr.Audio(
                    label= "Output Audio",
                    visible = True,
                    scale=5,
                    editable=False
                )
                g_gr_audio_list.append(audio_output)
        
        btn_get_similar.click(
            get_next_index_zero,
            inputs=[
                audio_input
            ],
            outputs=[
                *g_gr_audio_list,
                input_index
            ]
        )

        btn_get_previous_index.click(
            get_previous_index,
            inputs=[
                audio_input,
                input_index
            ],
            outputs=[
                *g_gr_audio_list,
                input_index
            ]
        )

        btn_get_next_index.click(
            get_next_index,
            inputs=[
                audio_input,
                input_index
            ],
            outputs=[
                *g_gr_audio_list,
                input_index
            ]
        )

    #demo.launch(server_name=args.server_name, server_port=args.server_port)
    demo.launch()