omoured commited on
Commit
e09b6a1
·
1 Parent(s): 305d7b7

first push

Browse files
Files changed (2) hide show
  1. app.py +87 -0
  2. requirements.txt +12 -0
app.py ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Import libraries
2
+ import cv2
3
+ from ultralytics import YOLO
4
+ import gradio as gr
5
+
6
+ # Define constants
7
+ ENTITIES_COLORS = {
8
+ "Caption": (191, 100, 21),
9
+ "Footnote": (2, 62, 115),
10
+ "Formula": (140, 80, 58),
11
+ "List-item": (168, 181, 69),
12
+ "Page-footer": (2, 69, 84),
13
+ "Page-header": (83, 115, 106),
14
+ "Picture": (255, 72, 88),
15
+ "Section-header": (0, 204, 192),
16
+ "Table": (116, 127, 127),
17
+ "Text": (0, 153, 221),
18
+ "Title": (196, 51, 2)
19
+ }
20
+ BOX_PADDING = 2
21
+
22
+ # Load models
23
+ DETECTION_MODEL = YOLO("models/yolov11x_best.pt")
24
+
25
+ def detect(image_path):
26
+ """
27
+ Output inference image with bounding box
28
+ Args:
29
+ - image: to check for checkboxes
30
+ Return: image with bounding boxes drawn
31
+ """
32
+ image = cv2.imread(image_path)
33
+ if image is None:
34
+ return image
35
+
36
+ # Predict on image
37
+ results = DETECTION_MODEL.predict(source=image, conf=0.2, iou=0.8) # Predict on image
38
+ boxes = results[0].boxes # Get bounding boxes
39
+
40
+ if len(boxes) == 0:
41
+ return image
42
+
43
+ # Get bounding boxes
44
+ for box in boxes:
45
+ detection_class_conf = round(box.conf.item(), 2)
46
+ cls = list(ENTITIES_COLORS)[int(box.cls)]
47
+ # Get start and end points of the current box
48
+ start_box = (int(box.xyxy[0][0]), int(box.xyxy[0][1]))
49
+ end_box = (int(box.xyxy[0][2]), int(box.xyxy[0][3]))
50
+
51
+
52
+ # 01. DRAW BOUNDING BOX OF OBJECT
53
+ # Adjust the scale factors for bounding box and label
54
+ box_scale_factor = 0.001 # Reduce this value to make the bounding box thinner
55
+ label_scale_factor = 0.5 # Reduce this value to make the label smaller
56
+
57
+ # 01. DRAW BOUNDING BOX OF OBJECT
58
+ line_thickness = round(box_scale_factor * (image.shape[0] + image.shape[1]) / 2) + 1
59
+ image = cv2.rectangle(img=image,
60
+ pt1=start_box,
61
+ pt2=end_box,
62
+ color=ENTITIES_COLORS[cls],
63
+ thickness=line_thickness) # Draw the box with predefined colors
64
+
65
+ # 02. DRAW LABEL
66
+ text = cls + " " + str(detection_class_conf)
67
+ # Get text dimensions to draw wrapping box
68
+ font_thickness = max(line_thickness - 1, 1)
69
+ (font_scale_w, font_scale_h) = (line_thickness * label_scale_factor, line_thickness * label_scale_factor)
70
+ (text_w, text_h), _ = cv2.getTextSize(text=text, fontFace=2, fontScale=font_scale_w, thickness=font_thickness)
71
+ # Draw wrapping box for text
72
+ image = cv2.rectangle(img=image,
73
+ pt1=(start_box[0], start_box[1] - text_h - BOX_PADDING*2),
74
+ pt2=(start_box[0] + text_w + BOX_PADDING * 2, start_box[1]),
75
+ color=ENTITIES_COLORS[cls],
76
+ thickness=-1)
77
+ # Put class name on image
78
+ start_text = (start_box[0] + BOX_PADDING, start_box[1] - BOX_PADDING)
79
+ image = cv2.putText(img=image, text=text, org=start_text, fontFace=0, color=(255,255,255), fontScale=font_scale_w, thickness=font_thickness)
80
+
81
+
82
+ return image
83
+
84
+ iface = gr.Interface(fn=detect,
85
+ inputs=gr.Image(label="Upload scanned document", type="filepath"),
86
+ outputs="image")
87
+ iface.launch()
requirements.txt ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ultralytics
2
+ torch==2.0.1
3
+ torchvision==0.15.2
4
+ pycocotools==2.0.7
5
+ PyYAML==6.0.1
6
+ scipy==1.13.0
7
+ gradio==4.31.5
8
+ opencv-python==4.9.0.80
9
+ psutil==5.9.8
10
+ py-cpuinfo==9.0.0
11
+ safetensors==0.4.3
12
+