Update app.py
Browse files
app.py
CHANGED
@@ -1,13 +1,9 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
-
import torchaudio
|
4 |
import numpy as np
|
5 |
from transformers import Wav2Vec2FeatureExtractor, Wav2Vec2ForSequenceClassification
|
6 |
-
from queue import Queue
|
7 |
-
from threading import Thread
|
8 |
-
import time
|
9 |
|
10 |
-
# Initialize
|
11 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
12 |
model_name = "Hatman/audio-emotion-detection"
|
13 |
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name)
|
@@ -25,34 +21,32 @@ EMOTION_LABELS = {
|
|
25 |
6: "surprise"
|
26 |
}
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
class AudioProcessor:
|
33 |
-
def __init__(self):
|
34 |
-
self.audio_queue = Queue()
|
35 |
-
self.results_queue = Queue()
|
36 |
-
self.is_running = False
|
37 |
-
self.current_emotions = []
|
38 |
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
|
|
|
|
49 |
# Prepare input for the model
|
50 |
inputs = feature_extractor(
|
51 |
-
|
52 |
-
sampling_rate=
|
53 |
return_tensors="pt",
|
54 |
padding=True
|
55 |
)
|
|
|
|
|
56 |
inputs = {k: v.to(device) for k, v in inputs.items()}
|
57 |
|
58 |
# Get prediction
|
@@ -61,84 +55,31 @@ class AudioProcessor:
|
|
61 |
logits = outputs.logits
|
62 |
predicted_id = torch.argmax(logits, dim=-1).item()
|
63 |
|
64 |
-
|
65 |
-
|
66 |
-
def process_audio_stream(self):
|
67 |
-
"""Continuously process audio chunks from the queue"""
|
68 |
-
while self.is_running:
|
69 |
-
if not self.audio_queue.empty():
|
70 |
-
audio_chunk = self.audio_queue.get()
|
71 |
-
emotion = self.process_chunk(audio_chunk)
|
72 |
-
self.current_emotions.append(emotion)
|
73 |
-
# Keep only the last 5 emotions
|
74 |
-
self.current_emotions = self.current_emotions[-5:]
|
75 |
-
self.results_queue.put(self.current_emotions.copy())
|
76 |
-
time.sleep(0.1)
|
77 |
-
|
78 |
-
def start(self):
|
79 |
-
"""Start the processing thread"""
|
80 |
-
self.is_running = True
|
81 |
-
self.process_thread = Thread(target=self.process_audio_stream)
|
82 |
-
self.process_thread.start()
|
83 |
-
|
84 |
-
def stop(self):
|
85 |
-
"""Stop the processing thread"""
|
86 |
-
self.is_running = False
|
87 |
-
if hasattr(self, 'process_thread'):
|
88 |
-
self.process_thread.join()
|
89 |
-
|
90 |
-
audio_processor = AudioProcessor()
|
91 |
-
|
92 |
-
def process_audio(audio, state):
|
93 |
-
"""Process incoming audio stream"""
|
94 |
-
if state is None or not state.get('is_running', False):
|
95 |
-
audio_processor.start()
|
96 |
-
state = {'is_running': True}
|
97 |
-
|
98 |
-
# Convert audio to numpy array if it's not already
|
99 |
-
if isinstance(audio, tuple):
|
100 |
-
audio = audio[1] # Get the actual audio data
|
101 |
-
audio = np.array(audio)
|
102 |
-
|
103 |
-
# Add to processing queue
|
104 |
-
audio_processor.audio_queue.put(audio)
|
105 |
-
|
106 |
-
# Get latest results
|
107 |
-
if not audio_processor.results_queue.empty():
|
108 |
-
emotions = audio_processor.results_queue.get()
|
109 |
-
return gr.update(value=", ".join(emotions)), state
|
110 |
|
111 |
-
|
|
|
|
|
112 |
|
113 |
-
#
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
audio_input.stream(
|
133 |
-
process_audio,
|
134 |
-
inputs=[audio_input, state],
|
135 |
-
outputs=[output, state],
|
136 |
-
show_progress=False
|
137 |
-
)
|
138 |
-
|
139 |
-
# Launch with cleanup handling
|
140 |
-
demo.queue(max_size=10).launch(share=True, prevent_thread_lock=True)
|
141 |
|
142 |
-
#
|
143 |
-
|
144 |
-
atexit.register(on_close)
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
|
|
3 |
import numpy as np
|
4 |
from transformers import Wav2Vec2FeatureExtractor, Wav2Vec2ForSequenceClassification
|
|
|
|
|
|
|
5 |
|
6 |
+
# Initialize model and processor
|
7 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
8 |
model_name = "Hatman/audio-emotion-detection"
|
9 |
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name)
|
|
|
21 |
6: "surprise"
|
22 |
}
|
23 |
|
24 |
+
def process_audio(audio):
|
25 |
+
"""Process audio chunk and return emotion"""
|
26 |
+
if audio is None:
|
27 |
+
return ""
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
+
# Get the audio data
|
30 |
+
if isinstance(audio, tuple):
|
31 |
+
audio = audio[1]
|
32 |
+
|
33 |
+
# Convert to numpy array if needed
|
34 |
+
audio = np.array(audio)
|
35 |
+
|
36 |
+
# Ensure we have mono audio
|
37 |
+
if len(audio.shape) > 1:
|
38 |
+
audio = audio.mean(axis=1)
|
39 |
+
|
40 |
+
try:
|
41 |
# Prepare input for the model
|
42 |
inputs = feature_extractor(
|
43 |
+
audio,
|
44 |
+
sampling_rate=16000,
|
45 |
return_tensors="pt",
|
46 |
padding=True
|
47 |
)
|
48 |
+
|
49 |
+
# Move to appropriate device
|
50 |
inputs = {k: v.to(device) for k, v in inputs.items()}
|
51 |
|
52 |
# Get prediction
|
|
|
55 |
logits = outputs.logits
|
56 |
predicted_id = torch.argmax(logits, dim=-1).item()
|
57 |
|
58 |
+
emotion = EMOTION_LABELS[predicted_id]
|
59 |
+
return emotion
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
+
except Exception as e:
|
62 |
+
print(f"Error processing audio: {e}")
|
63 |
+
return "Error processing audio"
|
64 |
|
65 |
+
# Create Gradio interface
|
66 |
+
demo = gr.Interface(
|
67 |
+
fn=process_audio,
|
68 |
+
inputs=[
|
69 |
+
gr.Audio(
|
70 |
+
sources=["microphone"],
|
71 |
+
type="numpy",
|
72 |
+
streaming=True,
|
73 |
+
label="Speak into your microphone",
|
74 |
+
show_label=True
|
75 |
+
)
|
76 |
+
],
|
77 |
+
outputs=gr.Textbox(label="Detected Emotion"),
|
78 |
+
title="Live Emotion Detection",
|
79 |
+
description="Speak into your microphone to detect emotions in real-time.",
|
80 |
+
live=True,
|
81 |
+
allow_flagging=False
|
82 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
+
# Launch with a small queue for better real-time performance
|
85 |
+
demo.queue(max_size=1).launch(share=True)
|
|