on1onmangoes commited on
Commit
6bba7ce
·
verified ·
1 Parent(s): 7acded7

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +182 -6
app.py CHANGED
@@ -9,10 +9,10 @@ HF_TOKEN = os.getenv("HF_TOKEN") # Replace with your actual token if not using
9
  client = Client("on1onmangoes/CNIHUB10724v9", hf_token=HF_TOKEN)
10
 
11
  # Function to handle chat API call
12
- def stream_chat_with_rag(message, client_name, system_prompt, num_retrieved_docs, num_docs_final, temperature, max_new_tokens, top_p, top_k, penalty):
13
  response = client.predict(
14
  message=message,
15
- client_name=client_name,
16
  system_prompt=system_prompt,
17
  num_retrieved_docs=num_retrieved_docs,
18
  num_docs_final=num_docs_final,
@@ -26,10 +26,10 @@ def stream_chat_with_rag(message, client_name, system_prompt, num_retrieved_docs
26
  return response
27
 
28
  # Function to handle PDF processing API call
29
- def process_pdf(pdf_file, client_name):
30
  return client.predict(
31
  pdf_file=handle_file(pdf_file),
32
- client_name=client_name,
33
  api_name="/process_pdf2"
34
  )[1] # Return only the result string
35
 
@@ -50,7 +50,7 @@ with gr.Blocks() as app:
50
  password_input = gr.Textbox(label="Password", placeholder="Enter your password", type="password")
51
 
52
  with gr.Tab("Chat"):
53
- chatbot = gr.Chatbot() # Create a chatbot interface
54
 
55
  chat_interface = gr.ChatInterface(
56
  fn=stream_chat_with_rag,
@@ -135,7 +135,7 @@ with gr.Blocks() as app:
135
  pdf_button = gr.Button("Process PDF")
136
  pdf_button.click(
137
  process_pdf,
138
- inputs=[pdf_input, client_name_dropdown],
139
  outputs=pdf_output
140
  )
141
 
@@ -173,6 +173,182 @@ app.launch()
173
 
174
 
175
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
176
  # import gradio as gr
177
  # from gradio_client import Client, handle_file
178
  # import os
 
9
  client = Client("on1onmangoes/CNIHUB10724v9", hf_token=HF_TOKEN)
10
 
11
  # Function to handle chat API call
12
+ def stream_chat_with_rag(message, system_prompt, num_retrieved_docs, num_docs_final, temperature, max_new_tokens, top_p, top_k, penalty):
13
  response = client.predict(
14
  message=message,
15
+ client_name="rosariarossi", # Hardcoded client name
16
  system_prompt=system_prompt,
17
  num_retrieved_docs=num_retrieved_docs,
18
  num_docs_final=num_docs_final,
 
26
  return response
27
 
28
  # Function to handle PDF processing API call
29
+ def process_pdf(pdf_file):
30
  return client.predict(
31
  pdf_file=handle_file(pdf_file),
32
+ client_name="rosariarossi", # Hardcoded client name
33
  api_name="/process_pdf2"
34
  )[1] # Return only the result string
35
 
 
50
  password_input = gr.Textbox(label="Password", placeholder="Enter your password", type="password")
51
 
52
  with gr.Tab("Chat"):
53
+ chatbot = gr.Chatbot(fill_height=True) # Create a chatbot interface
54
 
55
  chat_interface = gr.ChatInterface(
56
  fn=stream_chat_with_rag,
 
135
  pdf_button = gr.Button("Process PDF")
136
  pdf_button.click(
137
  process_pdf,
138
+ inputs=[pdf_input],
139
  outputs=pdf_output
140
  )
141
 
 
173
 
174
 
175
 
176
+
177
+ # import gradio as gr
178
+ # from gradio_client import Client, handle_file
179
+ # import os
180
+
181
+ # # Define your Hugging Face token (make sure to set it as an environment variable)
182
+ # HF_TOKEN = os.getenv("HF_TOKEN") # Replace with your actual token if not using an environment variable
183
+
184
+ # # Initialize the Gradio Client for the specified API
185
+ # client = Client("on1onmangoes/CNIHUB10724v9", hf_token=HF_TOKEN)
186
+
187
+ # # Function to handle chat API call
188
+ # def stream_chat_with_rag(message, client_name, system_prompt, num_retrieved_docs, num_docs_final, temperature, max_new_tokens, top_p, top_k, penalty):
189
+ # response = client.predict(
190
+ # message=message,
191
+ # client_name=client_name,
192
+ # system_prompt=system_prompt,
193
+ # num_retrieved_docs=num_retrieved_docs,
194
+ # num_docs_final=num_docs_final,
195
+ # temperature=temperature,
196
+ # max_new_tokens=max_new_tokens,
197
+ # top_p=top_p,
198
+ # top_k=top_k,
199
+ # penalty=penalty,
200
+ # api_name="/chat"
201
+ # )
202
+ # return response
203
+
204
+ # # Function to handle PDF processing API call
205
+ # def process_pdf(pdf_file, client_name):
206
+ # return client.predict(
207
+ # pdf_file=handle_file(pdf_file),
208
+ # client_name=client_name,
209
+ # api_name="/process_pdf2"
210
+ # )[1] # Return only the result string
211
+
212
+ # # Function to handle search API call
213
+ # def search_api(query):
214
+ # return client.predict(query=query, api_name="/search_with_confidence")
215
+
216
+ # # Function to handle RAG API call
217
+ # def rag_api(question):
218
+ # return client.predict(question=question, api_name="/answer_with_rag")
219
+
220
+ # # Create the Gradio Blocks interface
221
+ # with gr.Blocks() as app:
222
+ # gr.Markdown("### Login")
223
+
224
+ # with gr.Row():
225
+ # username_input = gr.Textbox(label="Username", placeholder="Enter your username")
226
+ # password_input = gr.Textbox(label="Password", placeholder="Enter your password", type="password")
227
+
228
+ # with gr.Tab("Chat"):
229
+ # chatbot = gr.Chatbot() # Create a chatbot interface
230
+
231
+ # chat_interface = gr.ChatInterface(
232
+ # fn=stream_chat_with_rag,
233
+ # chatbot=chatbot,
234
+ # fill_height=True,
235
+ # additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
236
+ # additional_inputs=[
237
+ # gr.Dropdown(
238
+ # ['rosariarossi', 'bianchifiordaliso', 'lorenzoverdi'],
239
+ # value="rosariarossi",
240
+ # label="Select Client",
241
+ # render=False,
242
+ # ),
243
+ # gr.Textbox(
244
+ # value="You are an expert assistant",
245
+ # label="System Prompt",
246
+ # render=False,
247
+ # ),
248
+ # gr.Slider(
249
+ # minimum=1,
250
+ # maximum=10,
251
+ # step=1,
252
+ # value=10,
253
+ # label="Number of Initial Documents to Retrieve",
254
+ # render=False,
255
+ # ),
256
+ # gr.Slider(
257
+ # minimum=1,
258
+ # maximum=10,
259
+ # step=1,
260
+ # value=9,
261
+ # label="Number of Final Documents to Retrieve",
262
+ # render=False,
263
+ # ),
264
+ # gr.Slider(
265
+ # minimum=0.2,
266
+ # maximum=1,
267
+ # step=0.1,
268
+ # value=0,
269
+ # label="Temperature",
270
+ # render=False,
271
+ # ),
272
+ # gr.Slider(
273
+ # minimum=128,
274
+ # maximum=8192,
275
+ # step=1,
276
+ # value=1024,
277
+ # label="Max new tokens",
278
+ # render=False,
279
+ # ),
280
+ # gr.Slider(
281
+ # minimum=0.0,
282
+ # maximum=1.0,
283
+ # step=0.1,
284
+ # value=1.0,
285
+ # label="Top P",
286
+ # render=False,
287
+ # ),
288
+ # gr.Slider(
289
+ # minimum=1,
290
+ # maximum=20,
291
+ # step=1,
292
+ # value=20,
293
+ # label="Top K",
294
+ # render=False,
295
+ # ),
296
+ # gr.Slider(
297
+ # minimum=0.0,
298
+ # maximum=2.0,
299
+ # step=0.1,
300
+ # value=1.2,
301
+ # label="Repetition Penalty",
302
+ # render=False,
303
+ # ),
304
+ # ],
305
+ # )
306
+
307
+ # with gr.Tab("Process PDF"):
308
+ # pdf_input = gr.File(label="Upload PDF File")
309
+ # pdf_output = gr.Textbox(label="PDF Result", interactive=False)
310
+
311
+ # pdf_button = gr.Button("Process PDF")
312
+ # pdf_button.click(
313
+ # process_pdf,
314
+ # inputs=[pdf_input, client_name_dropdown],
315
+ # outputs=pdf_output
316
+ # )
317
+
318
+ # with gr.Tab("Search"):
319
+ # query_input = gr.Textbox(label="Enter Search Query")
320
+ # search_output = gr.Textbox(label="Search Confidence Result", interactive=False)
321
+
322
+ # search_button = gr.Button("Search")
323
+ # search_button.click(
324
+ # search_api,
325
+ # inputs=query_input,
326
+ # outputs=search_output
327
+ # )
328
+
329
+ # with gr.Tab("Answer with RAG"):
330
+ # question_input = gr.Textbox(label="Enter Question for RAG")
331
+ # rag_output = gr.Textbox(label="RAG Answer Result", interactive=False)
332
+
333
+ # rag_button = gr.Button("Get Answer")
334
+ # rag_button.click(
335
+ # rag_api,
336
+ # inputs=question_input,
337
+ # outputs=rag_output
338
+ # )
339
+
340
+ # # Launch the app
341
+ # app.launch()
342
+
343
+
344
+
345
+
346
+
347
+
348
+
349
+
350
+
351
+
352
  # import gradio as gr
353
  # from gradio_client import Client, handle_file
354
  # import os