on1onmangoes commited on
Commit
461a633
1 Parent(s): fc9e91e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +13 -20
app.py CHANGED
@@ -1,14 +1,15 @@
1
  import streamlit as st
 
2
  from transformers import pipeline
3
  from pydub import AudioSegment, silence
4
  #import speech_recognition as sr
5
 
6
- pipe = pipeline('sentiment-analysis')
7
- text = st.text_area('Enter your notes')
8
 
9
- if text:
10
- out = pipe(text)
11
- st.json(out)
12
 
13
  st.markdown("<h1 style = text align:center;'> Group Therapy Notes </h1>",unsafe_allow_html = True)
14
  st.markdown("---",unsafe_allow_html=True)
@@ -20,19 +21,11 @@ if audio:
20
  # stride_length_s is a tuple of the left and right stride length.
21
  # With only 1 number, both sides get the same stride, by default
22
  # the stride_length on one side is 1/6th of the chunk_length_s
23
- audio_segment= AudioSegment.from_file(audio)
24
- output = pipe(audio_segment, chunk_length_s=10, stride_length_s=(4, 2))
25
-
26
-
27
- # st.json(output)
28
-
29
- # asr = pipeline('automatic-speech-recognition')
30
- # asr_out = asr (audio_segment)
31
- # st.json(asr_out)
32
-
33
-
34
- # chunks=silence.split_on_silence(audio_segment, min_silence_len=500, silence_thresh= audio_segment.dBFS-20,keep_silence=100)
35
- # for index, chunk in enumerate (chunks):
36
  # chunk.export(str(index)+".wav", format="wav")
37
- # print(chunk)
38
-
 
 
 
 
 
1
  import streamlit as st
2
+ import time as t
3
  from transformers import pipeline
4
  from pydub import AudioSegment, silence
5
  #import speech_recognition as sr
6
 
7
+ #pipe = pipeline('sentiment-analysis')
8
+ #text = st.text_area('Enter your notes')
9
 
10
+ #if text:
11
+ # out = pipe(text)
12
+ # st.json(out)
13
 
14
  st.markdown("<h1 style = text align:center;'> Group Therapy Notes </h1>",unsafe_allow_html = True)
15
  st.markdown("---",unsafe_allow_html=True)
 
21
  # stride_length_s is a tuple of the left and right stride length.
22
  # With only 1 number, both sides get the same stride, by default
23
  # the stride_length on one side is 1/6th of the chunk_length_s
24
+
 
 
 
 
 
 
 
 
 
 
 
 
25
  # chunk.export(str(index)+".wav", format="wav")
26
+ audio_segment= AudioSegment.from_file(audio)
27
+ chunks=silence.split_on_silence(audio_segment, min_silence_len=500, silence_thresh= audio_segment.dBFS-20,keep_silence=100)
28
+ for index, chunk in enumerate (chunks):
29
+ #output = pipe(audio_segment, chunk_length_s=10, stride_length_s=(4, 2))
30
+ print (chunk)
31
+