import streamlit as st from transformers import pipeline from pydub import AudioSegment, silence #import speech_recognition as sr pipe = pipeline('sentiment-analysis') text = st.text_area('Enter your notes') if text: out = pipe(text) st.json(out) st.markdown("

Group Therapy Notes

",unsafe_allow_html = True) st.markdown("---",unsafe_allow_html=True) audio=st.file_uploader("Upload Your Audio File", type=['mp3','wav','m4a']) if audio: audio_segment= AudioSegment.from_file(audio) chunks=silence.split_on_silence(audio_segment, min_silence_len=500, silence_thresh= audio_segment.dBFS-20,keep_silence=100) for index, chunk in enumerate (chunks): chunk.export(str(index)+".wav", format="wav") print(chunk)