import streamlit as st
from transformers import pipeline
from pydub import AudioSegment, silence
#import speech_recognition as sr
pipe = pipeline('sentiment-analysis')
text = st.text_area('Enter your notes')
if text:
out = pipe(text)
st.json(out)
st.markdown("
Group Therapy Notes
",unsafe_allow_html = True)
st.markdown("---",unsafe_allow_html=True)
audio=st.file_uploader("Upload Your Audio File", type=['mp3','wav','m4a'])
If audio:
audio_segment= AudioSegment.from_file(audio)
chunks=silence.split_on_silence(audio_segment, min_silence_length=500, silence_thresh= audio_segment.dBFs-20,keep_silence=100)
for index, chunk in enumerate (chunks):
chunk.export(str(index)+".wav", format="wav")
print(chunk)