import gradio as gr import pandas as pd import numpy as np from collections import defaultdict from gradio_leaderboard import Leaderboard, SelectColumns # Load the DataFrame from the CSV files for detailed pass@k metrics df = pd.read_csv('results.csv') duo_df = pd.read_csv('results_duo.csv') # Ensure 'Model' and 'Scenario' columns are strings df['Model'] = df['Model'].astype(str) df['Scenario'] = df['Scenario'].astype(str) # Function to estimate pass@k def estimate_pass_at_k(num_samples, num_correct, k): def estimator(n, c, k): if n < k: return np.nan if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1, n + 1)) return np.array([estimator(n, c, k) for n, c in zip(num_samples, num_correct)]) # Function to calculate pass@k def calculate_pass_at_k(df, model, scenario, k_values=[1, 5, 10]): filtered_df = df[(df['Model'] == model) & (df['Scenario'] == scenario)] num_samples = filtered_df['Runs'].values num_correct = filtered_df['Successes'].values pass_at_k = {f"pass@{k}": estimate_pass_at_k(num_samples, num_correct, k).mean() for k in k_values} return pass_at_k # Function to filter data and calculate pass@k def filter_data(model, scenario): pass_at_k = calculate_pass_at_k(df, model, scenario) return pd.DataFrame([pass_at_k]) # Initialize the leaderboard def init_leaderboard(dataframe, default_selection=["Model", "pass@1", "pass@5", "pass@10"], height=600): if dataframe is None or dataframe.empty: raise ValueError("Leaderboard DataFrame is empty or None.") return Leaderboard( value=dataframe, datatype=["markdown", "number", "number", "number"], # Specify the types of your columns select_columns=SelectColumns( default_selection=default_selection, # Columns to display by default cant_deselect=[], # Columns that cannot be deselected label="Select Columns to Display:", ), search_columns=["Model"], # Columns that can be searched hide_columns=[], # Columns to hide filter_columns=[], # Filters for the columns #bool_checkboxgroup_label="Hide models", interactive=False, height=height, ) # Gradio interface #models = df['Model'].unique().tolist() #scenarios = df['Scenario'].unique().tolist() # Initialize leaderboard with the complete DataFrame duo_complete_pass_at_k = duo_df.groupby('Model')[['Runs', 'Successes']].apply(lambda x: pd.Series({ 'pass@1': estimate_pass_at_k(x['Runs'].values, x['Successes'].values, 1).mean() }, index=['pass@1'])).reset_index() complete_pass_at_k = df.groupby('Model')[['Runs', 'Successes']].apply(lambda x: pd.Series({ 'pass@1': estimate_pass_at_k(x['Runs'].values, x['Successes'].values, 1).mean(), 'pass@5': estimate_pass_at_k(x['Runs'].values, x['Successes'].values, 5).mean(), 'pass@10': estimate_pass_at_k(x['Runs'].values, x['Successes'].values, 10).mean() }, index=['pass@1', 'pass@5', 'pass@10'])).reset_index() with gr.Blocks() as demo: gr.Markdown("# 🏆 WebApp1K Models Leaderboard") gr.Markdown( "## [Discord](https://discord.gg/3qpAbWC7) " + "[Papers](https://huggingface.co/onekq) " + "[Blog](https://huggingface.co/blog/onekq/all-llms-write-great-code) " "[Github](https://github.com/onekq/WebApp1k) " + "[AI Models](https://www.aimodels.fyi/papers/arxiv/webapp1k-practical-code-generation-benchmark-web-app)") gr.Markdown("# WebApp1K-Duo ([Benchmark](https://huggingface.co/datasets/onekq-ai/WebApp1K-Duo-React))") duo_leaderboard = init_leaderboard(duo_complete_pass_at_k, default_selection = ["Model", "pass@1"], height=400) gr.Markdown("# WebApp1K ([Benchmark](https://huggingface.co/datasets/onekq-ai/WebApp1K-React))") leaderboard = init_leaderboard(complete_pass_at_k, default_selection = [], height=800) # Launch the Gradio interface demo.launch()