diff --git a/.gitattributes b/.gitattributes
new file mode 100644
index 0000000000000000000000000000000000000000..1886779001abd130151c3c646982ae25c9d49682
--- /dev/null
+++ b/.gitattributes
@@ -0,0 +1,37 @@
+*.7z filter=lfs diff=lfs merge=lfs -text
+*.arrow filter=lfs diff=lfs merge=lfs -text
+*.bin filter=lfs diff=lfs merge=lfs -text
+*.bz2 filter=lfs diff=lfs merge=lfs -text
+*.ckpt filter=lfs diff=lfs merge=lfs -text
+*.ftz filter=lfs diff=lfs merge=lfs -text
+*.gz filter=lfs diff=lfs merge=lfs -text
+*.h5 filter=lfs diff=lfs merge=lfs -text
+*.joblib filter=lfs diff=lfs merge=lfs -text
+*.lfs.* filter=lfs diff=lfs merge=lfs -text
+*.mlmodel filter=lfs diff=lfs merge=lfs -text
+*.model filter=lfs diff=lfs merge=lfs -text
+*.msgpack filter=lfs diff=lfs merge=lfs -text
+*.npy filter=lfs diff=lfs merge=lfs -text
+*.npz filter=lfs diff=lfs merge=lfs -text
+*.onnx filter=lfs diff=lfs merge=lfs -text
+*.ot filter=lfs diff=lfs merge=lfs -text
+*.parquet filter=lfs diff=lfs merge=lfs -text
+*.pb filter=lfs diff=lfs merge=lfs -text
+*.pickle filter=lfs diff=lfs merge=lfs -text
+*.pkl filter=lfs diff=lfs merge=lfs -text
+*.pt filter=lfs diff=lfs merge=lfs -text
+*.pth filter=lfs diff=lfs merge=lfs -text
+*.rar filter=lfs diff=lfs merge=lfs -text
+*.safetensors filter=lfs diff=lfs merge=lfs -text
+saved_model/**/* filter=lfs diff=lfs merge=lfs -text
+*.tar.* filter=lfs diff=lfs merge=lfs -text
+*.tflite filter=lfs diff=lfs merge=lfs -text
+*.tgz filter=lfs diff=lfs merge=lfs -text
+*.wasm filter=lfs diff=lfs merge=lfs -text
+*.xz filter=lfs diff=lfs merge=lfs -text
+*.zip filter=lfs diff=lfs merge=lfs -text
+*.zst filter=lfs diff=lfs merge=lfs -text
+*tfevents* filter=lfs diff=lfs merge=lfs -text
+*.index filter=lfs diff=lfs merge=lfs -text
+*.png filter=lfs diff=lfs merge=lfs -text
+*.jpg filter=lfs diff=lfs merge=lfs -text
diff --git a/.gitignore b/.gitignore
new file mode 100644
index 0000000000000000000000000000000000000000..c24ff6aaae50ea65f4f8277ef79157ad3328f103
--- /dev/null
+++ b/.gitignore
@@ -0,0 +1,384 @@
+## Ignore Visual Studio temporary files, build results, and
+## files generated by popular Visual Studio add-ons.
+##
+## Get latest from https://github.com/github/gitignore/blob/master/VisualStudio.gitignore
+
+# User-specific files
+*.rsuser
+*.suo
+*.user
+*.userosscache
+*.sln.docstates
+load.py
+button.py
+
+# User-specific files (MonoDevelop/Xamarin Studio)
+*.userprefs
+
+# Mono auto generated files
+mono_crash.*
+
+# Build results
+[Dd]ebug/
+[Dd]ebugPublic/
+[Rr]elease/
+[Rr]eleases/
+x64/
+x86/
+[Ww][Ii][Nn]32/
+[Aa][Rr][Mm]/
+[Aa][Rr][Mm]64/
+bld/
+[Bb]in/
+[Oo]bj/
+[Oo]ut/
+[Ll]og/
+[Ll]ogs/
+infer_pack\__pycache__
+# Visual Studio 2015/2017 cache/options directory
+.vs/
+# Uncomment if you have tasks that create the project's static files in wwwroot
+#wwwroot/
+
+# Visual Studio 2017 auto generated files
+Generated\ Files/
+
+# MSTest test Results
+[Tt]est[Rr]esult*/
+[Bb]uild[Ll]og.*
+
+# NUnit
+*.VisualState.xml
+TestResult.xml
+nunit-*.xml
+
+# Build Results of an ATL Project
+[Dd]ebugPS/
+[Rr]eleasePS/
+dlldata.c
+
+# Benchmark Results
+BenchmarkDotNet.Artifacts/
+
+# .NET Core
+project.lock.json
+project.fragment.lock.json
+artifacts/
+
+# ASP.NET Scaffolding
+ScaffoldingReadMe.txt
+
+# StyleCop
+StyleCopReport.xml
+
+# Files built by Visual Studio
+*_i.c
+*_p.c
+*_h.h
+*.ilk
+*.meta
+*.obj
+*.iobj
+*.pch
+*.pdb
+*.ipdb
+*.pgc
+*.pgd
+*.rsp
+*.sbr
+*.tlb
+*.tli
+*.tlh
+*.tmp
+*.tmp_proj
+*_wpftmp.csproj
+*.log
+*.vspscc
+*.vssscc
+.builds
+*.pidb
+*.svclog
+*.scc
+
+# Chutzpah Test files
+_Chutzpah*
+
+# Visual C++ cache files
+ipch/
+*.aps
+*.ncb
+*.opendb
+*.opensdf
+*.sdf
+*.cachefile
+*.VC.db
+*.VC.VC.opendb
+
+# Visual Studio profiler
+*.psess
+*.vsp
+*.vspx
+*.sap
+
+# Visual Studio Trace Files
+*.e2e
+
+# TFS 2012 Local Workspace
+$tf/
+
+# Guidance Automation Toolkit
+*.gpState
+
+# ReSharper is a .NET coding add-in
+_ReSharper*/
+*.[Rr]e[Ss]harper
+*.DotSettings.user
+
+# TeamCity is a build add-in
+_TeamCity*
+
+# DotCover is a Code Coverage Tool
+*.dotCover
+
+# AxoCover is a Code Coverage Tool
+.axoCover/*
+!.axoCover/settings.json
+
+# Coverlet is a free, cross platform Code Coverage Tool
+coverage*.json
+coverage*.xml
+coverage*.info
+
+# Visual Studio code coverage results
+*.coverage
+*.coveragexml
+
+# NCrunch
+_NCrunch_*
+.*crunch*.local.xml
+nCrunchTemp_*
+
+# MightyMoose
+*.mm.*
+AutoTest.Net/
+
+# Web workbench (sass)
+.sass-cache/
+
+# Installshield output folder
+[Ee]xpress/
+
+# DocProject is a documentation generator add-in
+DocProject/buildhelp/
+DocProject/Help/*.HxT
+DocProject/Help/*.HxC
+DocProject/Help/*.hhc
+DocProject/Help/*.hhk
+DocProject/Help/*.hhp
+DocProject/Help/Html2
+DocProject/Help/html
+
+# Click-Once directory
+publish/
+
+# Publish Web Output
+*.[Pp]ublish.xml
+*.azurePubxml
+# Note: Comment the next line if you want to checkin your web deploy settings,
+# but database connection strings (with potential passwords) will be unencrypted
+*.pubxml
+*.publishproj
+
+# Microsoft Azure Web App publish settings. Comment the next line if you want to
+# checkin your Azure Web App publish settings, but sensitive information contained
+# in these scripts will be unencrypted
+PublishScripts/
+
+# NuGet Packages
+*.nupkg
+# NuGet Symbol Packages
+*.snupkg
+# The packages folder can be ignored because of Package Restore
+**/[Pp]ackages/*
+# except build/, which is used as an MSBuild target.
+!**/[Pp]ackages/build/
+# Uncomment if necessary however generally it will be regenerated when needed
+#!**/[Pp]ackages/repositories.config
+# NuGet v3's project.json files produces more ignorable files
+*.nuget.props
+*.nuget.targets
+
+# Microsoft Azure Build Output
+csx/
+*.build.csdef
+
+# Microsoft Azure Emulator
+ecf/
+rcf/
+
+# Windows Store app package directories and files
+AppPackages/
+BundleArtifacts/
+Package.StoreAssociation.xml
+_pkginfo.txt
+*.appx
+*.appxbundle
+*.appxupload
+
+# Visual Studio cache files
+# files ending in .cache can be ignored
+*.[Cc]ache
+# but keep track of directories ending in .cache
+!?*.[Cc]ache/
+
+# Others
+ClientBin/
+~$*
+*~
+*.dbmdl
+*.dbproj.schemaview
+*.jfm
+*.pfx
+*.publishsettings
+orleans.codegen.cs
+
+# Including strong name files can present a security risk
+# (https://github.com/github/gitignore/pull/2483#issue-259490424)
+#*.snk
+
+# Since there are multiple workflows, uncomment next line to ignore bower_components
+# (https://github.com/github/gitignore/pull/1529#issuecomment-104372622)
+#bower_components/
+
+# RIA/Silverlight projects
+Generated_Code/
+
+# Backup & report files from converting an old project file
+# to a newer Visual Studio version. Backup files are not needed,
+# because we have git ;-)
+_UpgradeReport_Files/
+Backup*/
+UpgradeLog*.XML
+UpgradeLog*.htm
+ServiceFabricBackup/
+*.rptproj.bak
+
+# SQL Server files
+*.mdf
+*.ldf
+*.ndf
+
+# Business Intelligence projects
+*.rdl.data
+*.bim.layout
+*.bim_*.settings
+*.rptproj.rsuser
+*- [Bb]ackup.rdl
+*- [Bb]ackup ([0-9]).rdl
+*- [Bb]ackup ([0-9][0-9]).rdl
+
+# Microsoft Fakes
+FakesAssemblies/
+
+# GhostDoc plugin setting file
+*.GhostDoc.xml
+
+# Node.js Tools for Visual Studio
+.ntvs_analysis.dat
+node_modules/
+
+# Visual Studio 6 build log
+*.plg
+
+# Visual Studio 6 workspace options file
+*.opt
+
+# Visual Studio 6 auto-generated workspace file (contains which files were open etc.)
+*.vbw
+
+# Visual Studio LightSwitch build output
+**/*.HTMLClient/GeneratedArtifacts
+**/*.DesktopClient/GeneratedArtifacts
+**/*.DesktopClient/ModelManifest.xml
+**/*.Server/GeneratedArtifacts
+**/*.Server/ModelManifest.xml
+_Pvt_Extensions
+
+# Paket dependency manager
+.paket/paket.exe
+paket-files/
+
+# FAKE - F# Make
+.fake/
+
+# CodeRush personal settings
+.cr/personal
+
+# Python Tools for Visual Studio (PTVS)
+__pycache__/
+
+
+# Cake - Uncomment if you are using it
+# tools/**
+# !tools/packages.config
+
+# Tabs Studio
+*.tss
+
+# Telerik's JustMock configuration file
+*.jmconfig
+
+# BizTalk build output
+*.btp.cs
+*.btm.cs
+*.odx.cs
+*.xsd.cs
+
+# OpenCover UI analysis results
+OpenCover/
+
+# Azure Stream Analytics local run output
+ASALocalRun/
+
+# MSBuild Binary and Structured Log
+*.binlog
+
+# NVidia Nsight GPU debugger configuration file
+*.nvuser
+
+# MFractors (Xamarin productivity tool) working folder
+.mfractor/
+
+# Local History for Visual Studio
+.localhistory/
+
+# BeatPulse healthcheck temp database
+healthchecksdb
+
+# Backup folder for Package Reference Convert tool in Visual Studio 2017
+MigrationBackup/
+
+# Ionide (cross platform F# VS Code tools) working folder
+.ionide/
+
+# Fody - auto-generated XML schema
+FodyWeavers.xsd
+
+# build
+build
+monotonic_align/core.c
+*.o
+*.so
+*.dll
+
+# data
+/config.json
+/*.pth
+*.wav
+/monotonic_align/monotonic_align
+/resources
+/MoeGoe.spec
+/dist/MoeGoe
+/dist
+
+.idea
\ No newline at end of file
diff --git a/README.md b/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..d3e270a9c52ac54fe31595f1a5305afc9bce2b80
--- /dev/null
+++ b/README.md
@@ -0,0 +1,14 @@
+---
+title: RVC Inference
+emoji: 🎤
+colorFrom: red
+colorTo: purple
+sdk: gradio
+sdk_version: 3.32.0
+app_file: app.py
+pinned: true
+license: mit
+duplicated_from: ArkanDash/rvc-models-new
+---
+
+Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
diff --git a/app-full.py b/app-full.py
new file mode 100644
index 0000000000000000000000000000000000000000..5322eac79ff3f6061617d3f091e606063a7507e8
--- /dev/null
+++ b/app-full.py
@@ -0,0 +1,289 @@
+import os
+import glob
+import json
+import traceback
+import logging
+import gradio as gr
+import numpy as np
+import librosa
+import torch
+import asyncio
+import edge_tts
+import yt_dlp
+import ffmpeg
+import subprocess
+import sys
+import io
+import wave
+from datetime import datetime
+from fairseq import checkpoint_utils
+from infer_pack.models import SynthesizerTrnMs256NSFsid, SynthesizerTrnMs256NSFsid_nono
+from vc_infer_pipeline import VC
+from config import Config
+config = Config()
+logging.getLogger("numba").setLevel(logging.WARNING)
+
+def create_vc_fn(tgt_sr, net_g, vc, if_f0, file_index):
+ def vc_fn(
+ input_audio,
+ upload_audio,
+ upload_mode,
+ f0_up_key,
+ f0_method,
+ index_rate,
+ tts_mode,
+ tts_text,
+ tts_voice
+ ):
+ try:
+ if tts_mode:
+ if tts_text is None or tts_voice is None:
+ return "You need to enter text and select a voice", None
+ asyncio.run(edge_tts.Communicate(tts_text, "-".join(tts_voice.split('-')[:-1])).save("tts.mp3"))
+ audio, sr = librosa.load("tts.mp3", sr=16000, mono=True)
+ else:
+ if upload_mode:
+ if input_audio is None:
+ return "You need to upload an audio", None
+ sampling_rate, audio = upload_audio
+ duration = audio.shape[0] / sampling_rate
+ audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
+ if len(audio.shape) > 1:
+ audio = librosa.to_mono(audio.transpose(1, 0))
+ if sampling_rate != 16000:
+ audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)
+ else:
+ audio, sr = librosa.load(input_audio, sr=16000, mono=True)
+ times = [0, 0, 0]
+ f0_up_key = int(f0_up_key)
+ audio_opt = vc.pipeline(
+ hubert_model,
+ net_g,
+ 0,
+ audio,
+ times,
+ f0_up_key,
+ f0_method,
+ file_index,
+ index_rate,
+ if_f0,
+ f0_file=None,
+ )
+ print(
+ f"[{datetime.now().strftime('%Y-%m-%d %H:%M')}]: npy: {times[0]}, f0: {times[1]}s, infer: {times[2]}s"
+ )
+ return (tgt_sr, audio_opt)
+ except:
+ info = traceback.format_exc()
+ print(info)
+ return info, (None, None)
+ return vc_fn
+
+def cut_vocal_and_inst(url, audio_provider, split_model):
+ if url != "":
+ if not os.path.exists("dl_audio"):
+ os.mkdir("dl_audio")
+ if audio_provider == "Youtube":
+ ydl_opts = {
+ 'format': 'bestaudio/best',
+ 'postprocessors': [{
+ 'key': 'FFmpegExtractAudio',
+ 'preferredcodec': 'wav',
+ }],
+ "outtmpl": 'dl_audio/youtube_audio',
+ }
+ with yt_dlp.YoutubeDL(ydl_opts) as ydl:
+ ydl.download([url])
+ audio_path = "dl_audio/youtube_audio.wav"
+ else:
+ # Spotify doesnt work.
+ # Need to find other solution soon.
+ '''
+ command = f"spotdl download {url} --output dl_audio/.wav"
+ result = subprocess.run(command.split(), stdout=subprocess.PIPE)
+ print(result.stdout.decode())
+ audio_path = "dl_audio/spotify_audio.wav"
+ '''
+ if split_model == "htdemucs":
+ command = f"demucs --two-stems=vocals {audio_path} -o output"
+ result = subprocess.run(command.split(), stdout=subprocess.PIPE)
+ print(result.stdout.decode())
+ return "output/htdemucs/youtube_audio/vocals.wav", "output/htdemucs/youtube_audio/no_vocals.wav", audio_path, "output/htdemucs/youtube_audio/vocals.wav"
+ else:
+ command = f"demucs --two-stems=vocals -n mdx_extra_q {audio_path} -o output"
+ result = subprocess.run(command.split(), stdout=subprocess.PIPE)
+ print(result.stdout.decode())
+ return "output/mdx_extra_q/youtube_audio/vocals.wav", "output/mdx_extra_q/youtube_audio/no_vocals.wav", audio_path, "output/mdx_extra_q/youtube_audio/vocals.wav"
+ else:
+ raise gr.Error("URL Required!")
+ return None, None, None, None
+
+def combine_vocal_and_inst(audio_data, audio_volume, split_model):
+ if not os.path.exists("output/result"):
+ os.mkdir("output/result")
+ vocal_path = "output/result/output.wav"
+ output_path = "output/result/combine.mp3"
+ if split_model == "htdemucs":
+ inst_path = "output/htdemucs/youtube_audio/no_vocals.wav"
+ else:
+ inst_path = "output/mdx_extra_q/youtube_audio/no_vocals.wav"
+ with wave.open(vocal_path, "w") as wave_file:
+ wave_file.setnchannels(1)
+ wave_file.setsampwidth(2)
+ wave_file.setframerate(audio_data[0])
+ wave_file.writeframes(audio_data[1].tobytes())
+ command = f'ffmpeg -y -i {inst_path} -i {vocal_path} -filter_complex [1:a]volume={audio_volume}dB[v];[0:a][v]amix=inputs=2:duration=longest -b:a 320k -c:a libmp3lame {output_path}'
+ result = subprocess.run(command.split(), stdout=subprocess.PIPE)
+ print(result.stdout.decode())
+ return output_path
+
+def load_hubert():
+ global hubert_model
+ models, _, _ = checkpoint_utils.load_model_ensemble_and_task(
+ ["hubert_base.pt"],
+ suffix="",
+ )
+ hubert_model = models[0]
+ hubert_model = hubert_model.to(config.device)
+ if config.is_half:
+ hubert_model = hubert_model.half()
+ else:
+ hubert_model = hubert_model.float()
+ hubert_model.eval()
+
+def change_to_tts_mode(tts_mode, upload_mode):
+ if tts_mode:
+ return gr.Textbox.update(visible=False), gr.Audio.update(visible=False), gr.Checkbox.update(visible=False), gr.Textbox.update(visible=True), gr.Dropdown.update(visible=True)
+ else:
+ if upload_mode:
+ return gr.Textbox.update(visible=False), gr.Audio.update(visible=True), gr.Checkbox.update(visible=True), gr.Textbox.update(visible=False), gr.Dropdown.update(visible=False)
+ else:
+ return gr.Textbox.update(visible=True), gr.Audio.update(visible=False), gr.Checkbox.update(visible=True), gr.Textbox.update(visible=False), gr.Dropdown.update(visible=False)
+
+def change_to_upload_mode(upload_mode):
+ if upload_mode:
+ return gr.Textbox().update(visible=False), gr.Audio().update(visible=True)
+ else:
+ return gr.Textbox().update(visible=True), gr.Audio().update(visible=False)
+
+if __name__ == '__main__':
+ load_hubert()
+ categories = []
+ tts_voice_list = asyncio.get_event_loop().run_until_complete(edge_tts.list_voices())
+ voices = [f"{v['ShortName']}-{v['Gender']}" for v in tts_voice_list]
+ with open("weights/folder_info.json", "r", encoding="utf-8") as f:
+ folder_info = json.load(f)
+ for category_name, category_info in folder_info.items():
+ if not category_info['enable']:
+ continue
+ category_title = category_info['title']
+ category_folder = category_info['folder_path']
+ description = category_info['description']
+ models = []
+ with open(f"weights/{category_folder}/model_info.json", "r", encoding="utf-8") as f:
+ models_info = json.load(f)
+ for model_name, info in models_info.items():
+ if not info['enable']:
+ continue
+ model_title = info['title']
+ model_author = info.get("author", None)
+ model_cover = f"weights/{category_folder}/{model_name}/{info['cover']}"
+ model_index = f"weights/{category_folder}/{model_name}/{info['feature_retrieval_library']}"
+ cpt = torch.load(f"weights/{category_folder}/{model_name}/{model_name}.pth", map_location="cpu")
+ tgt_sr = cpt["config"][-1]
+ cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] # n_spk
+ if_f0 = cpt.get("f0", 1)
+ if if_f0 == 1:
+ net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=config.is_half)
+ else:
+ net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
+ del net_g.enc_q
+ print(net_g.load_state_dict(cpt["weight"], strict=False))
+ net_g.eval().to(config.device)
+ if config.is_half:
+ net_g = net_g.half()
+ else:
+ net_g = net_g.float()
+ vc = VC(tgt_sr, config)
+ print(f"Model loaded: {model_name}")
+ models.append((model_name, model_title, model_author, model_cover, create_vc_fn(tgt_sr, net_g, vc, if_f0, model_index)))
+ categories.append([category_title, category_folder, description, models])
+ with gr.Blocks() as app:
+ gr.Markdown(
+ "#
RVC Models\n"
+ "## The input audio should be clean and pure voice without background music.\n"
+ "### This project was inspired by [zomehwh](https://huggingface.co/spaces/zomehwh/rvc-models) and [ardha27](https://huggingface.co/spaces/ardha27/rvc-models)\n"
+ "[](https://colab.research.google.com/drive/110kiMZTdP6Ri1lY9-NbQf17GVPPhHyeT?usp=sharing)\n\n"
+ "[](https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI)"
+ )
+ for (folder_title, folder, description, models) in categories:
+ with gr.TabItem(folder_title):
+ if description:
+ gr.Markdown(f"### {description}")
+ with gr.Tabs():
+ if not models:
+ gr.Markdown("# No Model Loaded.")
+ gr.Markdown("## Please added the model or fix your model path.")
+ continue
+ for (name, title, author, cover, vc_fn) in models:
+ with gr.TabItem(name):
+ with gr.Row():
+ gr.Markdown(
+ ''
+ f'
{title}
\n'+
+ (f'
Model author: {author}
' if author else "")+
+ (f'

' if cover else "")+
+ '
'
+ )
+ with gr.Row():
+ with gr.Column():
+ vc_download_audio = gr.Dropdown(label="Provider", choices=["Youtube"], allow_custom_value=False, value="Youtube", info="Select provider [REQUIRED: UPLOAD MODE = OFF] (Default: Youtube)")
+ vc_link = gr.Textbox(label="Youtube URL", info="Example: https://www.youtube.com/watch?v=Nc0sB1Bmf-A")
+ vc_split_model = gr.Dropdown(label="Splitter Model", choices=["htdemucs", "mdx_extra_q"], allow_custom_value=False, value="htdemucs", info="Select the splitter model (Default: htdemucs)")
+ vc_split = gr.Button("Split Audio", variant="primary")
+ vc_vocal_preview = gr.Audio(label="Vocal Preview")
+ vc_inst_preview = gr.Audio(label="Instrumental Preview")
+ vc_audio_preview = gr.Audio(label="Audio Preview")
+ with gr.Column():
+ upload_mode = gr.Checkbox(label="Upload mode", value=False, info="Enable to upload audio instead of audio path")
+ vc_input = gr.Textbox(label="Input audio path")
+ vc_upload = gr.Audio(label="Upload audio file", visible=False, interactive=True)
+ vc_transpose = gr.Number(label="Transpose", value=0, info='Type "12" to change from male to female voice. Type "-12" to change female to male voice')
+ vc_f0method = gr.Radio(
+ label="Pitch extraction algorithm",
+ choices=["pm", "harvest"],
+ value="pm",
+ interactive=True,
+ info="PM is fast but Harvest is better for low frequencies. (Default: PM)"
+ )
+ vc_index_ratio = gr.Slider(
+ minimum=0,
+ maximum=1,
+ label="Retrieval feature ratio",
+ value=0.6,
+ interactive=True,
+ info="(Default: 0.6)"
+ )
+ tts_mode = gr.Checkbox(label="tts (use edge-tts as input)", value=False)
+ tts_text = gr.Textbox(visible=False, label="TTS text")
+ tts_voice = gr.Dropdown(label="Edge-tts speaker", choices=voices, visible=False, allow_custom_value=False, value="en-US-AnaNeural-Female")
+ vc_output = gr.Audio(label="Output Audio", interactive=False)
+ vc_submit = gr.Button("Convert", variant="primary")
+ with gr.Column():
+ vc_volume = gr.Slider(
+ minimum=0,
+ maximum=10,
+ label="Vocal volume",
+ value=4,
+ interactive=True,
+ step=1,
+ info="Adjust vocal volume (Default: 4}"
+ )
+ vc_combined_output = gr.Audio(label="Output Combined Audio")
+ vc_combine = gr.Button("Combine",variant="primary")
+ vc_submit.click(vc_fn, [vc_input, vc_upload, upload_mode, vc_transpose, vc_f0method, vc_index_ratio, tts_mode, tts_text, tts_voice], [vc_output])
+ vc_split.click(cut_vocal_and_inst, [vc_link, vc_download_audio, vc_split_model], [vc_vocal_preview, vc_inst_preview, vc_audio_preview, vc_input])
+ vc_combine.click(combine_vocal_and_inst, [vc_output, vc_volume, vc_split_model], vc_combined_output)
+ tts_mode.change(change_to_tts_mode, [tts_mode, upload_mode], [vc_input, vc_upload, upload_mode, tts_text, tts_voice])
+ upload_mode.change(change_to_upload_mode, [upload_mode], [vc_input, vc_upload])
+ app.queue(concurrency_count=1, max_size=20, api_open=config.api).launch(share=config.colab)
\ No newline at end of file
diff --git a/app.py b/app.py
new file mode 100644
index 0000000000000000000000000000000000000000..c064bbf595408fe4bc97796a3255872e09233708
--- /dev/null
+++ b/app.py
@@ -0,0 +1,195 @@
+import os
+import glob
+import json
+import argparse
+import traceback
+import logging
+import gradio as gr
+import numpy as np
+import librosa
+import torch
+import asyncio
+import edge_tts
+from datetime import datetime
+from fairseq import checkpoint_utils
+from infer_pack.models import SynthesizerTrnMs256NSFsid, SynthesizerTrnMs256NSFsid_nono
+from vc_infer_pipeline import VC
+from config import Config
+config = Config()
+logging.getLogger("numba").setLevel(logging.WARNING)
+limitation = os.getenv("SYSTEM") == "spaces" # limit audio length in huggingface spaces
+
+def create_vc_fn(tgt_sr, net_g, vc, if_f0, file_index):
+ def vc_fn(
+ input_audio,
+ f0_up_key,
+ f0_method,
+ index_rate,
+ tts_mode,
+ tts_text,
+ tts_voice
+ ):
+ try:
+ if tts_mode:
+ if len(tts_text) > 100 and limitation:
+ return "Text is too long", None
+ if tts_text is None or tts_voice is None:
+ return "You need to enter text and select a voice", None
+ asyncio.run(edge_tts.Communicate(tts_text, "-".join(tts_voice.split('-')[:-1])).save("tts.mp3"))
+ audio, sr = librosa.load("tts.mp3", sr=16000, mono=True)
+ else:
+ if input_audio is None:
+ return "You need to upload an audio", None
+ sampling_rate, audio = input_audio
+ duration = audio.shape[0] / sampling_rate
+ if duration > 20 and limitation:
+ return "Please upload an audio file that is less than 20 seconds. If you need to generate a longer audio file, please use Colab.", None
+ audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
+ if len(audio.shape) > 1:
+ audio = librosa.to_mono(audio.transpose(1, 0))
+ if sampling_rate != 16000:
+ audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)
+ times = [0, 0, 0]
+ f0_up_key = int(f0_up_key)
+ audio_opt = vc.pipeline(
+ hubert_model,
+ net_g,
+ 0,
+ audio,
+ times,
+ f0_up_key,
+ f0_method,
+ file_index,
+ index_rate,
+ if_f0,
+ f0_file=None,
+ )
+ print(
+ f"[{datetime.now().strftime('%Y-%m-%d %H:%M')}]: npy: {times[0]}, f0: {times[1]}s, infer: {times[2]}s"
+ )
+ return (tgt_sr, audio_opt)
+ except:
+ info = traceback.format_exc()
+ print(info)
+ return info, (None, None)
+ return vc_fn
+
+def load_hubert():
+ global hubert_model
+ models, _, _ = checkpoint_utils.load_model_ensemble_and_task(
+ ["hubert_base.pt"],
+ suffix="",
+ )
+ hubert_model = models[0]
+ hubert_model = hubert_model.to(config.device)
+ if config.is_half:
+ hubert_model = hubert_model.half()
+ else:
+ hubert_model = hubert_model.float()
+ hubert_model.eval()
+
+def change_to_tts_mode(tts_mode):
+ if tts_mode:
+ return gr.Audio.update(visible=False), gr.Textbox.update(visible=True), gr.Dropdown.update(visible=True)
+ else:
+ return gr.Audio.update(visible=True), gr.Textbox.update(visible=False), gr.Dropdown.update(visible=False)
+
+if __name__ == '__main__':
+ load_hubert()
+ categories = []
+ tts_voice_list = asyncio.get_event_loop().run_until_complete(edge_tts.list_voices())
+ voices = [f"{v['ShortName']}-{v['Gender']}" for v in tts_voice_list]
+ with open("weights/folder_info.json", "r", encoding="utf-8") as f:
+ folder_info = json.load(f)
+ for category_name, category_info in folder_info.items():
+ if not category_info['enable']:
+ continue
+ category_title = category_info['title']
+ category_folder = category_info['folder_path']
+ description = category_info['description']
+ models = []
+ with open(f"weights/{category_folder}/model_info.json", "r", encoding="utf-8") as f:
+ models_info = json.load(f)
+ for model_name, info in models_info.items():
+ if not info['enable']:
+ continue
+ model_title = info['title']
+ model_author = info.get("author", None)
+ model_cover = f"weights/{category_folder}/{model_name}/{info['cover']}"
+ model_index = f"weights/{category_folder}/{model_name}/{info['feature_retrieval_library']}"
+ cpt = torch.load(f"weights/{category_folder}/{model_name}/{model_name}.pth", map_location="cpu")
+ tgt_sr = cpt["config"][-1]
+ cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] # n_spk
+ if_f0 = cpt.get("f0", 1)
+ if if_f0 == 1:
+ net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=config.is_half)
+ else:
+ net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
+ del net_g.enc_q
+ print(net_g.load_state_dict(cpt["weight"], strict=False))
+ net_g.eval().to(config.device)
+ if config.is_half:
+ net_g = net_g.half()
+ else:
+ net_g = net_g.float()
+ vc = VC(tgt_sr, config)
+ print(f"Model loaded: {model_name}")
+ models.append((model_name, model_title, model_author, model_cover, create_vc_fn(tgt_sr, net_g, vc, if_f0, model_index)))
+ categories.append([category_title, category_folder, description, models])
+ with gr.Blocks() as app:
+ gr.Markdown(
+ "# RVC Models\n"
+ "## The input audio should be clean and pure voice without background music.\n"
+ "## [Recommended to use google colab for more feature](https://colab.research.google.com/drive/110kiMZTdP6Ri1lY9-NbQf17GVPPhHyeT?usp=sharing)\n"
+ "### This project was inspired by [zomehwh](https://huggingface.co/spaces/zomehwh/rvc-models) and [ardha27](https://huggingface.co/spaces/ardha27/rvc-models)\n"
+ "[](https://colab.research.google.com/drive/110kiMZTdP6Ri1lY9-NbQf17GVPPhHyeT?usp=sharing)\n\n"
+ "[](https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI)"
+ )
+ for (folder_title, folder, description, models) in categories:
+ with gr.TabItem(folder_title):
+ if description:
+ gr.Markdown(f"### {description}")
+ with gr.Tabs():
+ if not models:
+ gr.Markdown("# No Model Loaded.")
+ gr.Markdown("## Please added the model or fix your model path.")
+ continue
+ with gr.Tabs():
+ for (name, title, author, cover, vc_fn) in models:
+ with gr.TabItem(name):
+ with gr.Row():
+ gr.Markdown(
+ ''
+ f'
{title}
\n'+
+ (f'
Model author: {author}
' if author else "")+
+ (f'

' if cover else "")+
+ '
'
+ )
+ with gr.Row():
+ with gr.Column():
+ vc_input = gr.Audio(label="Input audio"+' (less than 20 seconds)' if limitation else '')
+ vc_transpose = gr.Number(label="Transpose", value=0, info='Type "12" to change from male to female voice. Type "-12" to change female to male voice')
+ vc_f0method = gr.Radio(
+ label="Pitch extraction algorithm",
+ choices=["pm", "harvest"],
+ value="pm",
+ interactive=True,
+ info="PM is fast but Harvest is better for low frequencies. (Default: PM)"
+ )
+ vc_index_ratio = gr.Slider(
+ minimum=0,
+ maximum=1,
+ label="Retrieval feature ratio",
+ value=0.6,
+ interactive=True,
+ info="(Default: 0.6)"
+ )
+ tts_mode = gr.Checkbox(label="tts (use edge-tts as input)", value=False)
+ tts_text = gr.Textbox(visible=False,label="TTS text (100 words limitation)" if limitation else "TTS text")
+ tts_voice = gr.Dropdown(label="Edge-tts speaker", choices=voices, visible=False, allow_custom_value=False, value="en-US-AnaNeural-Female")
+ vc_submit = gr.Button("Generate", variant="primary")
+ with gr.Column():
+ vc_output = gr.Audio(label="Output Audio")
+ vc_submit.click(vc_fn, [vc_input, vc_transpose, vc_f0method, vc_index_ratio, tts_mode, tts_text, tts_voice], [vc_output])
+ tts_mode.change(change_to_tts_mode, [tts_mode], [vc_input, tts_text, tts_voice])
+ app.queue(concurrency_count=1, max_size=20, api_open=config.api).launch(share=config.colab)
\ No newline at end of file
diff --git a/config.py b/config.py
new file mode 100644
index 0000000000000000000000000000000000000000..26e5c63e0ea863a89453424ab8fc3190151b79a7
--- /dev/null
+++ b/config.py
@@ -0,0 +1,120 @@
+import argparse
+import torch
+from multiprocessing import cpu_count
+
+
+class Config:
+ def __init__(self):
+ self.device = "cuda:0"
+ self.is_half = True
+ self.n_cpu = 0
+ self.gpu_name = None
+ self.gpu_mem = None
+ (
+ self.python_cmd,
+ self.listen_port,
+ self.colab,
+ self.noparallel,
+ self.noautoopen,
+ self.api
+ ) = self.arg_parse()
+ self.x_pad, self.x_query, self.x_center, self.x_max = self.device_config()
+
+ @staticmethod
+ def arg_parse() -> tuple:
+ parser = argparse.ArgumentParser()
+ parser.add_argument("--port", type=int, default=7865, help="Listen port")
+ parser.add_argument(
+ "--pycmd", type=str, default="python", help="Python command"
+ )
+ parser.add_argument("--colab", action="store_true", help="Launch in colab")
+ parser.add_argument(
+ "--noparallel", action="store_true", help="Disable parallel processing"
+ )
+ parser.add_argument(
+ "--noautoopen",
+ action="store_true",
+ help="Do not open in browser automatically",
+ )
+ parser.add_argument('--api', action="store_true", default=False)
+ cmd_opts = parser.parse_args()
+
+ cmd_opts.port = cmd_opts.port if 0 <= cmd_opts.port <= 65535 else 7865
+
+ return (
+ cmd_opts.pycmd,
+ cmd_opts.port,
+ cmd_opts.colab,
+ cmd_opts.noparallel,
+ cmd_opts.noautoopen,
+ cmd_opts.api,
+ )
+
+ def device_config(self) -> tuple:
+ if torch.cuda.is_available():
+ i_device = int(self.device.split(":")[-1])
+ self.gpu_name = torch.cuda.get_device_name(i_device)
+ if (
+ ("16" in self.gpu_name and "V100" not in self.gpu_name.upper())
+ or "P40" in self.gpu_name.upper()
+ or "1060" in self.gpu_name
+ or "1070" in self.gpu_name
+ or "1080" in self.gpu_name
+ ):
+ print("16系/10系显卡和P40强制单精度")
+ self.is_half = False
+ for config_file in ["32k.json", "40k.json", "48k.json"]:
+ with open(f"configs/{config_file}", "r") as f:
+ strr = f.read().replace("true", "false")
+ with open(f"configs/{config_file}", "w") as f:
+ f.write(strr)
+ with open("trainset_preprocess_pipeline_print.py", "r") as f:
+ strr = f.read().replace("3.7", "3.0")
+ with open("trainset_preprocess_pipeline_print.py", "w") as f:
+ f.write(strr)
+ else:
+ self.gpu_name = None
+ self.gpu_mem = int(
+ torch.cuda.get_device_properties(i_device).total_memory
+ / 1024
+ / 1024
+ / 1024
+ + 0.4
+ )
+ if self.gpu_mem <= 4:
+ with open("trainset_preprocess_pipeline_print.py", "r") as f:
+ strr = f.read().replace("3.7", "3.0")
+ with open("trainset_preprocess_pipeline_print.py", "w") as f:
+ f.write(strr)
+ elif torch.backends.mps.is_available():
+ print("没有发现支持的N卡, 使用MPS进行推理")
+ self.device = "mps"
+ self.is_half = False
+ else:
+ print("没有发现支持的N卡, 使用CPU进行推理")
+ self.device = "cpu"
+ self.is_half = False
+
+ if self.n_cpu == 0:
+ self.n_cpu = cpu_count()
+
+ if self.is_half:
+ # 6G显存配置
+ x_pad = 3
+ x_query = 10
+ x_center = 60
+ x_max = 65
+ else:
+ # 5G显存配置
+ x_pad = 1
+ x_query = 6
+ x_center = 38
+ x_max = 41
+
+ if self.gpu_mem != None and self.gpu_mem <= 4:
+ x_pad = 1
+ x_query = 5
+ x_center = 30
+ x_max = 32
+
+ return x_pad, x_query, x_center, x_max
\ No newline at end of file
diff --git a/hubert_base.pt b/hubert_base.pt
new file mode 100644
index 0000000000000000000000000000000000000000..72f47ab58564f01d5cc8b05c63bdf96d944551ff
--- /dev/null
+++ b/hubert_base.pt
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:f54b40fd2802423a5643779c4861af1e9ee9c1564dc9d32f54f20b5ffba7db96
+size 189507909
diff --git a/infer_pack/attentions.py b/infer_pack/attentions.py
new file mode 100644
index 0000000000000000000000000000000000000000..77cb63ffccf3e33badf22d50862a64ba517b487f
--- /dev/null
+++ b/infer_pack/attentions.py
@@ -0,0 +1,417 @@
+import copy
+import math
+import numpy as np
+import torch
+from torch import nn
+from torch.nn import functional as F
+
+from infer_pack import commons
+from infer_pack import modules
+from infer_pack.modules import LayerNorm
+
+
+class Encoder(nn.Module):
+ def __init__(
+ self,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size=1,
+ p_dropout=0.0,
+ window_size=10,
+ **kwargs
+ ):
+ super().__init__()
+ self.hidden_channels = hidden_channels
+ self.filter_channels = filter_channels
+ self.n_heads = n_heads
+ self.n_layers = n_layers
+ self.kernel_size = kernel_size
+ self.p_dropout = p_dropout
+ self.window_size = window_size
+
+ self.drop = nn.Dropout(p_dropout)
+ self.attn_layers = nn.ModuleList()
+ self.norm_layers_1 = nn.ModuleList()
+ self.ffn_layers = nn.ModuleList()
+ self.norm_layers_2 = nn.ModuleList()
+ for i in range(self.n_layers):
+ self.attn_layers.append(
+ MultiHeadAttention(
+ hidden_channels,
+ hidden_channels,
+ n_heads,
+ p_dropout=p_dropout,
+ window_size=window_size,
+ )
+ )
+ self.norm_layers_1.append(LayerNorm(hidden_channels))
+ self.ffn_layers.append(
+ FFN(
+ hidden_channels,
+ hidden_channels,
+ filter_channels,
+ kernel_size,
+ p_dropout=p_dropout,
+ )
+ )
+ self.norm_layers_2.append(LayerNorm(hidden_channels))
+
+ def forward(self, x, x_mask):
+ attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
+ x = x * x_mask
+ for i in range(self.n_layers):
+ y = self.attn_layers[i](x, x, attn_mask)
+ y = self.drop(y)
+ x = self.norm_layers_1[i](x + y)
+
+ y = self.ffn_layers[i](x, x_mask)
+ y = self.drop(y)
+ x = self.norm_layers_2[i](x + y)
+ x = x * x_mask
+ return x
+
+
+class Decoder(nn.Module):
+ def __init__(
+ self,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size=1,
+ p_dropout=0.0,
+ proximal_bias=False,
+ proximal_init=True,
+ **kwargs
+ ):
+ super().__init__()
+ self.hidden_channels = hidden_channels
+ self.filter_channels = filter_channels
+ self.n_heads = n_heads
+ self.n_layers = n_layers
+ self.kernel_size = kernel_size
+ self.p_dropout = p_dropout
+ self.proximal_bias = proximal_bias
+ self.proximal_init = proximal_init
+
+ self.drop = nn.Dropout(p_dropout)
+ self.self_attn_layers = nn.ModuleList()
+ self.norm_layers_0 = nn.ModuleList()
+ self.encdec_attn_layers = nn.ModuleList()
+ self.norm_layers_1 = nn.ModuleList()
+ self.ffn_layers = nn.ModuleList()
+ self.norm_layers_2 = nn.ModuleList()
+ for i in range(self.n_layers):
+ self.self_attn_layers.append(
+ MultiHeadAttention(
+ hidden_channels,
+ hidden_channels,
+ n_heads,
+ p_dropout=p_dropout,
+ proximal_bias=proximal_bias,
+ proximal_init=proximal_init,
+ )
+ )
+ self.norm_layers_0.append(LayerNorm(hidden_channels))
+ self.encdec_attn_layers.append(
+ MultiHeadAttention(
+ hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout
+ )
+ )
+ self.norm_layers_1.append(LayerNorm(hidden_channels))
+ self.ffn_layers.append(
+ FFN(
+ hidden_channels,
+ hidden_channels,
+ filter_channels,
+ kernel_size,
+ p_dropout=p_dropout,
+ causal=True,
+ )
+ )
+ self.norm_layers_2.append(LayerNorm(hidden_channels))
+
+ def forward(self, x, x_mask, h, h_mask):
+ """
+ x: decoder input
+ h: encoder output
+ """
+ self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(
+ device=x.device, dtype=x.dtype
+ )
+ encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
+ x = x * x_mask
+ for i in range(self.n_layers):
+ y = self.self_attn_layers[i](x, x, self_attn_mask)
+ y = self.drop(y)
+ x = self.norm_layers_0[i](x + y)
+
+ y = self.encdec_attn_layers[i](x, h, encdec_attn_mask)
+ y = self.drop(y)
+ x = self.norm_layers_1[i](x + y)
+
+ y = self.ffn_layers[i](x, x_mask)
+ y = self.drop(y)
+ x = self.norm_layers_2[i](x + y)
+ x = x * x_mask
+ return x
+
+
+class MultiHeadAttention(nn.Module):
+ def __init__(
+ self,
+ channels,
+ out_channels,
+ n_heads,
+ p_dropout=0.0,
+ window_size=None,
+ heads_share=True,
+ block_length=None,
+ proximal_bias=False,
+ proximal_init=False,
+ ):
+ super().__init__()
+ assert channels % n_heads == 0
+
+ self.channels = channels
+ self.out_channels = out_channels
+ self.n_heads = n_heads
+ self.p_dropout = p_dropout
+ self.window_size = window_size
+ self.heads_share = heads_share
+ self.block_length = block_length
+ self.proximal_bias = proximal_bias
+ self.proximal_init = proximal_init
+ self.attn = None
+
+ self.k_channels = channels // n_heads
+ self.conv_q = nn.Conv1d(channels, channels, 1)
+ self.conv_k = nn.Conv1d(channels, channels, 1)
+ self.conv_v = nn.Conv1d(channels, channels, 1)
+ self.conv_o = nn.Conv1d(channels, out_channels, 1)
+ self.drop = nn.Dropout(p_dropout)
+
+ if window_size is not None:
+ n_heads_rel = 1 if heads_share else n_heads
+ rel_stddev = self.k_channels**-0.5
+ self.emb_rel_k = nn.Parameter(
+ torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
+ * rel_stddev
+ )
+ self.emb_rel_v = nn.Parameter(
+ torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
+ * rel_stddev
+ )
+
+ nn.init.xavier_uniform_(self.conv_q.weight)
+ nn.init.xavier_uniform_(self.conv_k.weight)
+ nn.init.xavier_uniform_(self.conv_v.weight)
+ if proximal_init:
+ with torch.no_grad():
+ self.conv_k.weight.copy_(self.conv_q.weight)
+ self.conv_k.bias.copy_(self.conv_q.bias)
+
+ def forward(self, x, c, attn_mask=None):
+ q = self.conv_q(x)
+ k = self.conv_k(c)
+ v = self.conv_v(c)
+
+ x, self.attn = self.attention(q, k, v, mask=attn_mask)
+
+ x = self.conv_o(x)
+ return x
+
+ def attention(self, query, key, value, mask=None):
+ # reshape [b, d, t] -> [b, n_h, t, d_k]
+ b, d, t_s, t_t = (*key.size(), query.size(2))
+ query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
+ key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
+ value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
+
+ scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
+ if self.window_size is not None:
+ assert (
+ t_s == t_t
+ ), "Relative attention is only available for self-attention."
+ key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
+ rel_logits = self._matmul_with_relative_keys(
+ query / math.sqrt(self.k_channels), key_relative_embeddings
+ )
+ scores_local = self._relative_position_to_absolute_position(rel_logits)
+ scores = scores + scores_local
+ if self.proximal_bias:
+ assert t_s == t_t, "Proximal bias is only available for self-attention."
+ scores = scores + self._attention_bias_proximal(t_s).to(
+ device=scores.device, dtype=scores.dtype
+ )
+ if mask is not None:
+ scores = scores.masked_fill(mask == 0, -1e4)
+ if self.block_length is not None:
+ assert (
+ t_s == t_t
+ ), "Local attention is only available for self-attention."
+ block_mask = (
+ torch.ones_like(scores)
+ .triu(-self.block_length)
+ .tril(self.block_length)
+ )
+ scores = scores.masked_fill(block_mask == 0, -1e4)
+ p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
+ p_attn = self.drop(p_attn)
+ output = torch.matmul(p_attn, value)
+ if self.window_size is not None:
+ relative_weights = self._absolute_position_to_relative_position(p_attn)
+ value_relative_embeddings = self._get_relative_embeddings(
+ self.emb_rel_v, t_s
+ )
+ output = output + self._matmul_with_relative_values(
+ relative_weights, value_relative_embeddings
+ )
+ output = (
+ output.transpose(2, 3).contiguous().view(b, d, t_t)
+ ) # [b, n_h, t_t, d_k] -> [b, d, t_t]
+ return output, p_attn
+
+ def _matmul_with_relative_values(self, x, y):
+ """
+ x: [b, h, l, m]
+ y: [h or 1, m, d]
+ ret: [b, h, l, d]
+ """
+ ret = torch.matmul(x, y.unsqueeze(0))
+ return ret
+
+ def _matmul_with_relative_keys(self, x, y):
+ """
+ x: [b, h, l, d]
+ y: [h or 1, m, d]
+ ret: [b, h, l, m]
+ """
+ ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
+ return ret
+
+ def _get_relative_embeddings(self, relative_embeddings, length):
+ max_relative_position = 2 * self.window_size + 1
+ # Pad first before slice to avoid using cond ops.
+ pad_length = max(length - (self.window_size + 1), 0)
+ slice_start_position = max((self.window_size + 1) - length, 0)
+ slice_end_position = slice_start_position + 2 * length - 1
+ if pad_length > 0:
+ padded_relative_embeddings = F.pad(
+ relative_embeddings,
+ commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]),
+ )
+ else:
+ padded_relative_embeddings = relative_embeddings
+ used_relative_embeddings = padded_relative_embeddings[
+ :, slice_start_position:slice_end_position
+ ]
+ return used_relative_embeddings
+
+ def _relative_position_to_absolute_position(self, x):
+ """
+ x: [b, h, l, 2*l-1]
+ ret: [b, h, l, l]
+ """
+ batch, heads, length, _ = x.size()
+ # Concat columns of pad to shift from relative to absolute indexing.
+ x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, 1]]))
+
+ # Concat extra elements so to add up to shape (len+1, 2*len-1).
+ x_flat = x.view([batch, heads, length * 2 * length])
+ x_flat = F.pad(
+ x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [0, length - 1]])
+ )
+
+ # Reshape and slice out the padded elements.
+ x_final = x_flat.view([batch, heads, length + 1, 2 * length - 1])[
+ :, :, :length, length - 1 :
+ ]
+ return x_final
+
+ def _absolute_position_to_relative_position(self, x):
+ """
+ x: [b, h, l, l]
+ ret: [b, h, l, 2*l-1]
+ """
+ batch, heads, length, _ = x.size()
+ # padd along column
+ x = F.pad(
+ x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length - 1]])
+ )
+ x_flat = x.view([batch, heads, length**2 + length * (length - 1)])
+ # add 0's in the beginning that will skew the elements after reshape
+ x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
+ x_final = x_flat.view([batch, heads, length, 2 * length])[:, :, :, 1:]
+ return x_final
+
+ def _attention_bias_proximal(self, length):
+ """Bias for self-attention to encourage attention to close positions.
+ Args:
+ length: an integer scalar.
+ Returns:
+ a Tensor with shape [1, 1, length, length]
+ """
+ r = torch.arange(length, dtype=torch.float32)
+ diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
+ return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
+
+
+class FFN(nn.Module):
+ def __init__(
+ self,
+ in_channels,
+ out_channels,
+ filter_channels,
+ kernel_size,
+ p_dropout=0.0,
+ activation=None,
+ causal=False,
+ ):
+ super().__init__()
+ self.in_channels = in_channels
+ self.out_channels = out_channels
+ self.filter_channels = filter_channels
+ self.kernel_size = kernel_size
+ self.p_dropout = p_dropout
+ self.activation = activation
+ self.causal = causal
+
+ if causal:
+ self.padding = self._causal_padding
+ else:
+ self.padding = self._same_padding
+
+ self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
+ self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
+ self.drop = nn.Dropout(p_dropout)
+
+ def forward(self, x, x_mask):
+ x = self.conv_1(self.padding(x * x_mask))
+ if self.activation == "gelu":
+ x = x * torch.sigmoid(1.702 * x)
+ else:
+ x = torch.relu(x)
+ x = self.drop(x)
+ x = self.conv_2(self.padding(x * x_mask))
+ return x * x_mask
+
+ def _causal_padding(self, x):
+ if self.kernel_size == 1:
+ return x
+ pad_l = self.kernel_size - 1
+ pad_r = 0
+ padding = [[0, 0], [0, 0], [pad_l, pad_r]]
+ x = F.pad(x, commons.convert_pad_shape(padding))
+ return x
+
+ def _same_padding(self, x):
+ if self.kernel_size == 1:
+ return x
+ pad_l = (self.kernel_size - 1) // 2
+ pad_r = self.kernel_size // 2
+ padding = [[0, 0], [0, 0], [pad_l, pad_r]]
+ x = F.pad(x, commons.convert_pad_shape(padding))
+ return x
diff --git a/infer_pack/commons.py b/infer_pack/commons.py
new file mode 100644
index 0000000000000000000000000000000000000000..54470986f37825b35d90d7efa7437d1c26b87215
--- /dev/null
+++ b/infer_pack/commons.py
@@ -0,0 +1,166 @@
+import math
+import numpy as np
+import torch
+from torch import nn
+from torch.nn import functional as F
+
+
+def init_weights(m, mean=0.0, std=0.01):
+ classname = m.__class__.__name__
+ if classname.find("Conv") != -1:
+ m.weight.data.normal_(mean, std)
+
+
+def get_padding(kernel_size, dilation=1):
+ return int((kernel_size * dilation - dilation) / 2)
+
+
+def convert_pad_shape(pad_shape):
+ l = pad_shape[::-1]
+ pad_shape = [item for sublist in l for item in sublist]
+ return pad_shape
+
+
+def kl_divergence(m_p, logs_p, m_q, logs_q):
+ """KL(P||Q)"""
+ kl = (logs_q - logs_p) - 0.5
+ kl += (
+ 0.5 * (torch.exp(2.0 * logs_p) + ((m_p - m_q) ** 2)) * torch.exp(-2.0 * logs_q)
+ )
+ return kl
+
+
+def rand_gumbel(shape):
+ """Sample from the Gumbel distribution, protect from overflows."""
+ uniform_samples = torch.rand(shape) * 0.99998 + 0.00001
+ return -torch.log(-torch.log(uniform_samples))
+
+
+def rand_gumbel_like(x):
+ g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device)
+ return g
+
+
+def slice_segments(x, ids_str, segment_size=4):
+ ret = torch.zeros_like(x[:, :, :segment_size])
+ for i in range(x.size(0)):
+ idx_str = ids_str[i]
+ idx_end = idx_str + segment_size
+ ret[i] = x[i, :, idx_str:idx_end]
+ return ret
+
+
+def slice_segments2(x, ids_str, segment_size=4):
+ ret = torch.zeros_like(x[:, :segment_size])
+ for i in range(x.size(0)):
+ idx_str = ids_str[i]
+ idx_end = idx_str + segment_size
+ ret[i] = x[i, idx_str:idx_end]
+ return ret
+
+
+def rand_slice_segments(x, x_lengths=None, segment_size=4):
+ b, d, t = x.size()
+ if x_lengths is None:
+ x_lengths = t
+ ids_str_max = x_lengths - segment_size + 1
+ ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
+ ret = slice_segments(x, ids_str, segment_size)
+ return ret, ids_str
+
+
+def get_timing_signal_1d(length, channels, min_timescale=1.0, max_timescale=1.0e4):
+ position = torch.arange(length, dtype=torch.float)
+ num_timescales = channels // 2
+ log_timescale_increment = math.log(float(max_timescale) / float(min_timescale)) / (
+ num_timescales - 1
+ )
+ inv_timescales = min_timescale * torch.exp(
+ torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment
+ )
+ scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1)
+ signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0)
+ signal = F.pad(signal, [0, 0, 0, channels % 2])
+ signal = signal.view(1, channels, length)
+ return signal
+
+
+def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4):
+ b, channels, length = x.size()
+ signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
+ return x + signal.to(dtype=x.dtype, device=x.device)
+
+
+def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1):
+ b, channels, length = x.size()
+ signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
+ return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis)
+
+
+def subsequent_mask(length):
+ mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
+ return mask
+
+
+@torch.jit.script
+def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
+ n_channels_int = n_channels[0]
+ in_act = input_a + input_b
+ t_act = torch.tanh(in_act[:, :n_channels_int, :])
+ s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
+ acts = t_act * s_act
+ return acts
+
+
+def convert_pad_shape(pad_shape):
+ l = pad_shape[::-1]
+ pad_shape = [item for sublist in l for item in sublist]
+ return pad_shape
+
+
+def shift_1d(x):
+ x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
+ return x
+
+
+def sequence_mask(length, max_length=None):
+ if max_length is None:
+ max_length = length.max()
+ x = torch.arange(max_length, dtype=length.dtype, device=length.device)
+ return x.unsqueeze(0) < length.unsqueeze(1)
+
+
+def generate_path(duration, mask):
+ """
+ duration: [b, 1, t_x]
+ mask: [b, 1, t_y, t_x]
+ """
+ device = duration.device
+
+ b, _, t_y, t_x = mask.shape
+ cum_duration = torch.cumsum(duration, -1)
+
+ cum_duration_flat = cum_duration.view(b * t_x)
+ path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
+ path = path.view(b, t_x, t_y)
+ path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
+ path = path.unsqueeze(1).transpose(2, 3) * mask
+ return path
+
+
+def clip_grad_value_(parameters, clip_value, norm_type=2):
+ if isinstance(parameters, torch.Tensor):
+ parameters = [parameters]
+ parameters = list(filter(lambda p: p.grad is not None, parameters))
+ norm_type = float(norm_type)
+ if clip_value is not None:
+ clip_value = float(clip_value)
+
+ total_norm = 0
+ for p in parameters:
+ param_norm = p.grad.data.norm(norm_type)
+ total_norm += param_norm.item() ** norm_type
+ if clip_value is not None:
+ p.grad.data.clamp_(min=-clip_value, max=clip_value)
+ total_norm = total_norm ** (1.0 / norm_type)
+ return total_norm
diff --git a/infer_pack/models.py b/infer_pack/models.py
new file mode 100644
index 0000000000000000000000000000000000000000..96165f73644e6fb92d0ffedb4a3c9e1a457cb989
--- /dev/null
+++ b/infer_pack/models.py
@@ -0,0 +1,982 @@
+import math, pdb, os
+from time import time as ttime
+import torch
+from torch import nn
+from torch.nn import functional as F
+from infer_pack import modules
+from infer_pack import attentions
+from infer_pack import commons
+from infer_pack.commons import init_weights, get_padding
+from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
+from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
+from infer_pack.commons import init_weights
+import numpy as np
+from infer_pack import commons
+
+
+class TextEncoder256(nn.Module):
+ def __init__(
+ self,
+ out_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ f0=True,
+ ):
+ super().__init__()
+ self.out_channels = out_channels
+ self.hidden_channels = hidden_channels
+ self.filter_channels = filter_channels
+ self.n_heads = n_heads
+ self.n_layers = n_layers
+ self.kernel_size = kernel_size
+ self.p_dropout = p_dropout
+ self.emb_phone = nn.Linear(256, hidden_channels)
+ self.lrelu = nn.LeakyReLU(0.1, inplace=True)
+ if f0 == True:
+ self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
+ self.encoder = attentions.Encoder(
+ hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
+ )
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
+
+ def forward(self, phone, pitch, lengths):
+ if pitch == None:
+ x = self.emb_phone(phone)
+ else:
+ x = self.emb_phone(phone) + self.emb_pitch(pitch)
+ x = x * math.sqrt(self.hidden_channels) # [b, t, h]
+ x = self.lrelu(x)
+ x = torch.transpose(x, 1, -1) # [b, h, t]
+ x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
+ x.dtype
+ )
+ x = self.encoder(x * x_mask, x_mask)
+ stats = self.proj(x) * x_mask
+
+ m, logs = torch.split(stats, self.out_channels, dim=1)
+ return m, logs, x_mask
+
+
+class TextEncoder256Sim(nn.Module):
+ def __init__(
+ self,
+ out_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ f0=True,
+ ):
+ super().__init__()
+ self.out_channels = out_channels
+ self.hidden_channels = hidden_channels
+ self.filter_channels = filter_channels
+ self.n_heads = n_heads
+ self.n_layers = n_layers
+ self.kernel_size = kernel_size
+ self.p_dropout = p_dropout
+ self.emb_phone = nn.Linear(256, hidden_channels)
+ self.lrelu = nn.LeakyReLU(0.1, inplace=True)
+ if f0 == True:
+ self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
+ self.encoder = attentions.Encoder(
+ hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
+ )
+ self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
+
+ def forward(self, phone, pitch, lengths):
+ if pitch == None:
+ x = self.emb_phone(phone)
+ else:
+ x = self.emb_phone(phone) + self.emb_pitch(pitch)
+ x = x * math.sqrt(self.hidden_channels) # [b, t, h]
+ x = self.lrelu(x)
+ x = torch.transpose(x, 1, -1) # [b, h, t]
+ x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
+ x.dtype
+ )
+ x = self.encoder(x * x_mask, x_mask)
+ x = self.proj(x) * x_mask
+ return x, x_mask
+
+
+class ResidualCouplingBlock(nn.Module):
+ def __init__(
+ self,
+ channels,
+ hidden_channels,
+ kernel_size,
+ dilation_rate,
+ n_layers,
+ n_flows=4,
+ gin_channels=0,
+ ):
+ super().__init__()
+ self.channels = channels
+ self.hidden_channels = hidden_channels
+ self.kernel_size = kernel_size
+ self.dilation_rate = dilation_rate
+ self.n_layers = n_layers
+ self.n_flows = n_flows
+ self.gin_channels = gin_channels
+
+ self.flows = nn.ModuleList()
+ for i in range(n_flows):
+ self.flows.append(
+ modules.ResidualCouplingLayer(
+ channels,
+ hidden_channels,
+ kernel_size,
+ dilation_rate,
+ n_layers,
+ gin_channels=gin_channels,
+ mean_only=True,
+ )
+ )
+ self.flows.append(modules.Flip())
+
+ def forward(self, x, x_mask, g=None, reverse=False):
+ if not reverse:
+ for flow in self.flows:
+ x, _ = flow(x, x_mask, g=g, reverse=reverse)
+ else:
+ for flow in reversed(self.flows):
+ x = flow(x, x_mask, g=g, reverse=reverse)
+ return x
+
+ def remove_weight_norm(self):
+ for i in range(self.n_flows):
+ self.flows[i * 2].remove_weight_norm()
+
+
+class PosteriorEncoder(nn.Module):
+ def __init__(
+ self,
+ in_channels,
+ out_channels,
+ hidden_channels,
+ kernel_size,
+ dilation_rate,
+ n_layers,
+ gin_channels=0,
+ ):
+ super().__init__()
+ self.in_channels = in_channels
+ self.out_channels = out_channels
+ self.hidden_channels = hidden_channels
+ self.kernel_size = kernel_size
+ self.dilation_rate = dilation_rate
+ self.n_layers = n_layers
+ self.gin_channels = gin_channels
+
+ self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
+ self.enc = modules.WN(
+ hidden_channels,
+ kernel_size,
+ dilation_rate,
+ n_layers,
+ gin_channels=gin_channels,
+ )
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
+
+ def forward(self, x, x_lengths, g=None):
+ x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(
+ x.dtype
+ )
+ x = self.pre(x) * x_mask
+ x = self.enc(x, x_mask, g=g)
+ stats = self.proj(x) * x_mask
+ m, logs = torch.split(stats, self.out_channels, dim=1)
+ z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
+ return z, m, logs, x_mask
+
+ def remove_weight_norm(self):
+ self.enc.remove_weight_norm()
+
+
+class Generator(torch.nn.Module):
+ def __init__(
+ self,
+ initial_channel,
+ resblock,
+ resblock_kernel_sizes,
+ resblock_dilation_sizes,
+ upsample_rates,
+ upsample_initial_channel,
+ upsample_kernel_sizes,
+ gin_channels=0,
+ ):
+ super(Generator, self).__init__()
+ self.num_kernels = len(resblock_kernel_sizes)
+ self.num_upsamples = len(upsample_rates)
+ self.conv_pre = Conv1d(
+ initial_channel, upsample_initial_channel, 7, 1, padding=3
+ )
+ resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
+
+ self.ups = nn.ModuleList()
+ for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
+ self.ups.append(
+ weight_norm(
+ ConvTranspose1d(
+ upsample_initial_channel // (2**i),
+ upsample_initial_channel // (2 ** (i + 1)),
+ k,
+ u,
+ padding=(k - u) // 2,
+ )
+ )
+ )
+
+ self.resblocks = nn.ModuleList()
+ for i in range(len(self.ups)):
+ ch = upsample_initial_channel // (2 ** (i + 1))
+ for j, (k, d) in enumerate(
+ zip(resblock_kernel_sizes, resblock_dilation_sizes)
+ ):
+ self.resblocks.append(resblock(ch, k, d))
+
+ self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
+ self.ups.apply(init_weights)
+
+ if gin_channels != 0:
+ self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
+
+ def forward(self, x, g=None):
+ x = self.conv_pre(x)
+ if g is not None:
+ x = x + self.cond(g)
+
+ for i in range(self.num_upsamples):
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
+ x = self.ups[i](x)
+ xs = None
+ for j in range(self.num_kernels):
+ if xs is None:
+ xs = self.resblocks[i * self.num_kernels + j](x)
+ else:
+ xs += self.resblocks[i * self.num_kernels + j](x)
+ x = xs / self.num_kernels
+ x = F.leaky_relu(x)
+ x = self.conv_post(x)
+ x = torch.tanh(x)
+
+ return x
+
+ def remove_weight_norm(self):
+ for l in self.ups:
+ remove_weight_norm(l)
+ for l in self.resblocks:
+ l.remove_weight_norm()
+
+
+class SineGen(torch.nn.Module):
+ """Definition of sine generator
+ SineGen(samp_rate, harmonic_num = 0,
+ sine_amp = 0.1, noise_std = 0.003,
+ voiced_threshold = 0,
+ flag_for_pulse=False)
+ samp_rate: sampling rate in Hz
+ harmonic_num: number of harmonic overtones (default 0)
+ sine_amp: amplitude of sine-wavefrom (default 0.1)
+ noise_std: std of Gaussian noise (default 0.003)
+ voiced_thoreshold: F0 threshold for U/V classification (default 0)
+ flag_for_pulse: this SinGen is used inside PulseGen (default False)
+ Note: when flag_for_pulse is True, the first time step of a voiced
+ segment is always sin(np.pi) or cos(0)
+ """
+
+ def __init__(
+ self,
+ samp_rate,
+ harmonic_num=0,
+ sine_amp=0.1,
+ noise_std=0.003,
+ voiced_threshold=0,
+ flag_for_pulse=False,
+ ):
+ super(SineGen, self).__init__()
+ self.sine_amp = sine_amp
+ self.noise_std = noise_std
+ self.harmonic_num = harmonic_num
+ self.dim = self.harmonic_num + 1
+ self.sampling_rate = samp_rate
+ self.voiced_threshold = voiced_threshold
+
+ def _f02uv(self, f0):
+ # generate uv signal
+ uv = torch.ones_like(f0)
+ uv = uv * (f0 > self.voiced_threshold)
+ return uv
+
+ def forward(self, f0, upp):
+ """sine_tensor, uv = forward(f0)
+ input F0: tensor(batchsize=1, length, dim=1)
+ f0 for unvoiced steps should be 0
+ output sine_tensor: tensor(batchsize=1, length, dim)
+ output uv: tensor(batchsize=1, length, 1)
+ """
+ with torch.no_grad():
+ f0 = f0[:, None].transpose(1, 2)
+ f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim, device=f0.device)
+ # fundamental component
+ f0_buf[:, :, 0] = f0[:, :, 0]
+ for idx in np.arange(self.harmonic_num):
+ f0_buf[:, :, idx + 1] = f0_buf[:, :, 0] * (
+ idx + 2
+ ) # idx + 2: the (idx+1)-th overtone, (idx+2)-th harmonic
+ rad_values = (f0_buf / self.sampling_rate) % 1 ###%1意味着n_har的乘积无法后处理优化
+ rand_ini = torch.rand(
+ f0_buf.shape[0], f0_buf.shape[2], device=f0_buf.device
+ )
+ rand_ini[:, 0] = 0
+ rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
+ tmp_over_one = torch.cumsum(rad_values, 1) # % 1 #####%1意味着后面的cumsum无法再优化
+ tmp_over_one *= upp
+ tmp_over_one = F.interpolate(
+ tmp_over_one.transpose(2, 1),
+ scale_factor=upp,
+ mode="linear",
+ align_corners=True,
+ ).transpose(2, 1)
+ rad_values = F.interpolate(
+ rad_values.transpose(2, 1), scale_factor=upp, mode="nearest"
+ ).transpose(
+ 2, 1
+ ) #######
+ tmp_over_one %= 1
+ tmp_over_one_idx = (tmp_over_one[:, 1:, :] - tmp_over_one[:, :-1, :]) < 0
+ cumsum_shift = torch.zeros_like(rad_values)
+ cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
+ sine_waves = torch.sin(
+ torch.cumsum(rad_values + cumsum_shift, dim=1) * 2 * np.pi
+ )
+ sine_waves = sine_waves * self.sine_amp
+ uv = self._f02uv(f0)
+ uv = F.interpolate(
+ uv.transpose(2, 1), scale_factor=upp, mode="nearest"
+ ).transpose(2, 1)
+ noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
+ noise = noise_amp * torch.randn_like(sine_waves)
+ sine_waves = sine_waves * uv + noise
+ return sine_waves, uv, noise
+
+
+class SourceModuleHnNSF(torch.nn.Module):
+ """SourceModule for hn-nsf
+ SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
+ add_noise_std=0.003, voiced_threshod=0)
+ sampling_rate: sampling_rate in Hz
+ harmonic_num: number of harmonic above F0 (default: 0)
+ sine_amp: amplitude of sine source signal (default: 0.1)
+ add_noise_std: std of additive Gaussian noise (default: 0.003)
+ note that amplitude of noise in unvoiced is decided
+ by sine_amp
+ voiced_threshold: threhold to set U/V given F0 (default: 0)
+ Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
+ F0_sampled (batchsize, length, 1)
+ Sine_source (batchsize, length, 1)
+ noise_source (batchsize, length 1)
+ uv (batchsize, length, 1)
+ """
+
+ def __init__(
+ self,
+ sampling_rate,
+ harmonic_num=0,
+ sine_amp=0.1,
+ add_noise_std=0.003,
+ voiced_threshod=0,
+ is_half=True,
+ ):
+ super(SourceModuleHnNSF, self).__init__()
+
+ self.sine_amp = sine_amp
+ self.noise_std = add_noise_std
+ self.is_half = is_half
+ # to produce sine waveforms
+ self.l_sin_gen = SineGen(
+ sampling_rate, harmonic_num, sine_amp, add_noise_std, voiced_threshod
+ )
+
+ # to merge source harmonics into a single excitation
+ self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
+ self.l_tanh = torch.nn.Tanh()
+
+ def forward(self, x, upp=None):
+ sine_wavs, uv, _ = self.l_sin_gen(x, upp)
+ if self.is_half:
+ sine_wavs = sine_wavs.half()
+ sine_merge = self.l_tanh(self.l_linear(sine_wavs))
+ return sine_merge, None, None # noise, uv
+
+
+class GeneratorNSF(torch.nn.Module):
+ def __init__(
+ self,
+ initial_channel,
+ resblock,
+ resblock_kernel_sizes,
+ resblock_dilation_sizes,
+ upsample_rates,
+ upsample_initial_channel,
+ upsample_kernel_sizes,
+ gin_channels,
+ sr,
+ is_half=False,
+ ):
+ super(GeneratorNSF, self).__init__()
+ self.num_kernels = len(resblock_kernel_sizes)
+ self.num_upsamples = len(upsample_rates)
+
+ self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates))
+ self.m_source = SourceModuleHnNSF(
+ sampling_rate=sr, harmonic_num=0, is_half=is_half
+ )
+ self.noise_convs = nn.ModuleList()
+ self.conv_pre = Conv1d(
+ initial_channel, upsample_initial_channel, 7, 1, padding=3
+ )
+ resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
+
+ self.ups = nn.ModuleList()
+ for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
+ c_cur = upsample_initial_channel // (2 ** (i + 1))
+ self.ups.append(
+ weight_norm(
+ ConvTranspose1d(
+ upsample_initial_channel // (2**i),
+ upsample_initial_channel // (2 ** (i + 1)),
+ k,
+ u,
+ padding=(k - u) // 2,
+ )
+ )
+ )
+ if i + 1 < len(upsample_rates):
+ stride_f0 = np.prod(upsample_rates[i + 1 :])
+ self.noise_convs.append(
+ Conv1d(
+ 1,
+ c_cur,
+ kernel_size=stride_f0 * 2,
+ stride=stride_f0,
+ padding=stride_f0 // 2,
+ )
+ )
+ else:
+ self.noise_convs.append(Conv1d(1, c_cur, kernel_size=1))
+
+ self.resblocks = nn.ModuleList()
+ for i in range(len(self.ups)):
+ ch = upsample_initial_channel // (2 ** (i + 1))
+ for j, (k, d) in enumerate(
+ zip(resblock_kernel_sizes, resblock_dilation_sizes)
+ ):
+ self.resblocks.append(resblock(ch, k, d))
+
+ self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
+ self.ups.apply(init_weights)
+
+ if gin_channels != 0:
+ self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
+
+ self.upp = np.prod(upsample_rates)
+
+ def forward(self, x, f0, g=None):
+ har_source, noi_source, uv = self.m_source(f0, self.upp)
+ har_source = har_source.transpose(1, 2)
+ x = self.conv_pre(x)
+ if g is not None:
+ x = x + self.cond(g)
+
+ for i in range(self.num_upsamples):
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
+ x = self.ups[i](x)
+ x_source = self.noise_convs[i](har_source)
+ x = x + x_source
+ xs = None
+ for j in range(self.num_kernels):
+ if xs is None:
+ xs = self.resblocks[i * self.num_kernels + j](x)
+ else:
+ xs += self.resblocks[i * self.num_kernels + j](x)
+ x = xs / self.num_kernels
+ x = F.leaky_relu(x)
+ x = self.conv_post(x)
+ x = torch.tanh(x)
+ return x
+
+ def remove_weight_norm(self):
+ for l in self.ups:
+ remove_weight_norm(l)
+ for l in self.resblocks:
+ l.remove_weight_norm()
+
+
+sr2sr = {
+ "32k": 32000,
+ "40k": 40000,
+ "48k": 48000,
+}
+
+
+class SynthesizerTrnMs256NSFsid(nn.Module):
+ def __init__(
+ self,
+ spec_channels,
+ segment_size,
+ inter_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ resblock,
+ resblock_kernel_sizes,
+ resblock_dilation_sizes,
+ upsample_rates,
+ upsample_initial_channel,
+ upsample_kernel_sizes,
+ spk_embed_dim,
+ gin_channels,
+ sr,
+ **kwargs
+ ):
+ super().__init__()
+ if type(sr) == type("strr"):
+ sr = sr2sr[sr]
+ self.spec_channels = spec_channels
+ self.inter_channels = inter_channels
+ self.hidden_channels = hidden_channels
+ self.filter_channels = filter_channels
+ self.n_heads = n_heads
+ self.n_layers = n_layers
+ self.kernel_size = kernel_size
+ self.p_dropout = p_dropout
+ self.resblock = resblock
+ self.resblock_kernel_sizes = resblock_kernel_sizes
+ self.resblock_dilation_sizes = resblock_dilation_sizes
+ self.upsample_rates = upsample_rates
+ self.upsample_initial_channel = upsample_initial_channel
+ self.upsample_kernel_sizes = upsample_kernel_sizes
+ self.segment_size = segment_size
+ self.gin_channels = gin_channels
+ # self.hop_length = hop_length#
+ self.spk_embed_dim = spk_embed_dim
+ self.enc_p = TextEncoder256(
+ inter_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ )
+ self.dec = GeneratorNSF(
+ inter_channels,
+ resblock,
+ resblock_kernel_sizes,
+ resblock_dilation_sizes,
+ upsample_rates,
+ upsample_initial_channel,
+ upsample_kernel_sizes,
+ gin_channels=gin_channels,
+ sr=sr,
+ is_half=kwargs["is_half"],
+ )
+ self.enc_q = PosteriorEncoder(
+ spec_channels,
+ inter_channels,
+ hidden_channels,
+ 5,
+ 1,
+ 16,
+ gin_channels=gin_channels,
+ )
+ self.flow = ResidualCouplingBlock(
+ inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
+ )
+ self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
+ print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
+
+ def remove_weight_norm(self):
+ self.dec.remove_weight_norm()
+ self.flow.remove_weight_norm()
+ self.enc_q.remove_weight_norm()
+
+ def forward(
+ self, phone, phone_lengths, pitch, pitchf, y, y_lengths, ds
+ ): # 这里ds是id,[bs,1]
+ # print(1,pitch.shape)#[bs,t]
+ g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
+ m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
+ z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
+ z_p = self.flow(z, y_mask, g=g)
+ z_slice, ids_slice = commons.rand_slice_segments(
+ z, y_lengths, self.segment_size
+ )
+ # print(-1,pitchf.shape,ids_slice,self.segment_size,self.hop_length,self.segment_size//self.hop_length)
+ pitchf = commons.slice_segments2(pitchf, ids_slice, self.segment_size)
+ # print(-2,pitchf.shape,z_slice.shape)
+ o = self.dec(z_slice, pitchf, g=g)
+ return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
+
+ def infer(self, phone, phone_lengths, pitch, nsff0, sid, max_len=None):
+ g = self.emb_g(sid).unsqueeze(-1)
+ m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
+ z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
+ z = self.flow(z_p, x_mask, g=g, reverse=True)
+ o = self.dec((z * x_mask)[:, :, :max_len], nsff0, g=g)
+ return o, x_mask, (z, z_p, m_p, logs_p)
+
+
+class SynthesizerTrnMs256NSFsid_nono(nn.Module):
+ def __init__(
+ self,
+ spec_channels,
+ segment_size,
+ inter_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ resblock,
+ resblock_kernel_sizes,
+ resblock_dilation_sizes,
+ upsample_rates,
+ upsample_initial_channel,
+ upsample_kernel_sizes,
+ spk_embed_dim,
+ gin_channels,
+ sr=None,
+ **kwargs
+ ):
+ super().__init__()
+ self.spec_channels = spec_channels
+ self.inter_channels = inter_channels
+ self.hidden_channels = hidden_channels
+ self.filter_channels = filter_channels
+ self.n_heads = n_heads
+ self.n_layers = n_layers
+ self.kernel_size = kernel_size
+ self.p_dropout = p_dropout
+ self.resblock = resblock
+ self.resblock_kernel_sizes = resblock_kernel_sizes
+ self.resblock_dilation_sizes = resblock_dilation_sizes
+ self.upsample_rates = upsample_rates
+ self.upsample_initial_channel = upsample_initial_channel
+ self.upsample_kernel_sizes = upsample_kernel_sizes
+ self.segment_size = segment_size
+ self.gin_channels = gin_channels
+ # self.hop_length = hop_length#
+ self.spk_embed_dim = spk_embed_dim
+ self.enc_p = TextEncoder256(
+ inter_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ f0=False,
+ )
+ self.dec = Generator(
+ inter_channels,
+ resblock,
+ resblock_kernel_sizes,
+ resblock_dilation_sizes,
+ upsample_rates,
+ upsample_initial_channel,
+ upsample_kernel_sizes,
+ gin_channels=gin_channels,
+ )
+ self.enc_q = PosteriorEncoder(
+ spec_channels,
+ inter_channels,
+ hidden_channels,
+ 5,
+ 1,
+ 16,
+ gin_channels=gin_channels,
+ )
+ self.flow = ResidualCouplingBlock(
+ inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
+ )
+ self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
+ print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
+
+ def remove_weight_norm(self):
+ self.dec.remove_weight_norm()
+ self.flow.remove_weight_norm()
+ self.enc_q.remove_weight_norm()
+
+ def forward(self, phone, phone_lengths, y, y_lengths, ds): # 这里ds是id,[bs,1]
+ g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
+ m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
+ z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
+ z_p = self.flow(z, y_mask, g=g)
+ z_slice, ids_slice = commons.rand_slice_segments(
+ z, y_lengths, self.segment_size
+ )
+ o = self.dec(z_slice, g=g)
+ return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
+
+ def infer(self, phone, phone_lengths, sid, max_len=None):
+ g = self.emb_g(sid).unsqueeze(-1)
+ m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
+ z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
+ z = self.flow(z_p, x_mask, g=g, reverse=True)
+ o = self.dec((z * x_mask)[:, :, :max_len], g=g)
+ return o, x_mask, (z, z_p, m_p, logs_p)
+
+
+class SynthesizerTrnMs256NSFsid_sim(nn.Module):
+ """
+ Synthesizer for Training
+ """
+
+ def __init__(
+ self,
+ spec_channels,
+ segment_size,
+ inter_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ resblock,
+ resblock_kernel_sizes,
+ resblock_dilation_sizes,
+ upsample_rates,
+ upsample_initial_channel,
+ upsample_kernel_sizes,
+ spk_embed_dim,
+ # hop_length,
+ gin_channels=0,
+ use_sdp=True,
+ **kwargs
+ ):
+ super().__init__()
+ self.spec_channels = spec_channels
+ self.inter_channels = inter_channels
+ self.hidden_channels = hidden_channels
+ self.filter_channels = filter_channels
+ self.n_heads = n_heads
+ self.n_layers = n_layers
+ self.kernel_size = kernel_size
+ self.p_dropout = p_dropout
+ self.resblock = resblock
+ self.resblock_kernel_sizes = resblock_kernel_sizes
+ self.resblock_dilation_sizes = resblock_dilation_sizes
+ self.upsample_rates = upsample_rates
+ self.upsample_initial_channel = upsample_initial_channel
+ self.upsample_kernel_sizes = upsample_kernel_sizes
+ self.segment_size = segment_size
+ self.gin_channels = gin_channels
+ # self.hop_length = hop_length#
+ self.spk_embed_dim = spk_embed_dim
+ self.enc_p = TextEncoder256Sim(
+ inter_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ )
+ self.dec = GeneratorNSF(
+ inter_channels,
+ resblock,
+ resblock_kernel_sizes,
+ resblock_dilation_sizes,
+ upsample_rates,
+ upsample_initial_channel,
+ upsample_kernel_sizes,
+ gin_channels=gin_channels,
+ is_half=kwargs["is_half"],
+ )
+
+ self.flow = ResidualCouplingBlock(
+ inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
+ )
+ self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
+ print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
+
+ def remove_weight_norm(self):
+ self.dec.remove_weight_norm()
+ self.flow.remove_weight_norm()
+ self.enc_q.remove_weight_norm()
+
+ def forward(
+ self, phone, phone_lengths, pitch, pitchf, y_lengths, ds
+ ): # y是spec不需要了现在
+ g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
+ x, x_mask = self.enc_p(phone, pitch, phone_lengths)
+ x = self.flow(x, x_mask, g=g, reverse=True)
+ z_slice, ids_slice = commons.rand_slice_segments(
+ x, y_lengths, self.segment_size
+ )
+
+ pitchf = commons.slice_segments2(pitchf, ids_slice, self.segment_size)
+ o = self.dec(z_slice, pitchf, g=g)
+ return o, ids_slice
+
+ def infer(
+ self, phone, phone_lengths, pitch, pitchf, ds, max_len=None
+ ): # y是spec不需要了现在
+ g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
+ x, x_mask = self.enc_p(phone, pitch, phone_lengths)
+ x = self.flow(x, x_mask, g=g, reverse=True)
+ o = self.dec((x * x_mask)[:, :, :max_len], pitchf, g=g)
+ return o, o
+
+
+class MultiPeriodDiscriminator(torch.nn.Module):
+ def __init__(self, use_spectral_norm=False):
+ super(MultiPeriodDiscriminator, self).__init__()
+ periods = [2, 3, 5, 7, 11, 17]
+ # periods = [3, 5, 7, 11, 17, 23, 37]
+
+ discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
+ discs = discs + [
+ DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods
+ ]
+ self.discriminators = nn.ModuleList(discs)
+
+ def forward(self, y, y_hat):
+ y_d_rs = [] #
+ y_d_gs = []
+ fmap_rs = []
+ fmap_gs = []
+ for i, d in enumerate(self.discriminators):
+ y_d_r, fmap_r = d(y)
+ y_d_g, fmap_g = d(y_hat)
+ # for j in range(len(fmap_r)):
+ # print(i,j,y.shape,y_hat.shape,fmap_r[j].shape,fmap_g[j].shape)
+ y_d_rs.append(y_d_r)
+ y_d_gs.append(y_d_g)
+ fmap_rs.append(fmap_r)
+ fmap_gs.append(fmap_g)
+
+ return y_d_rs, y_d_gs, fmap_rs, fmap_gs
+
+
+class DiscriminatorS(torch.nn.Module):
+ def __init__(self, use_spectral_norm=False):
+ super(DiscriminatorS, self).__init__()
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
+ self.convs = nn.ModuleList(
+ [
+ norm_f(Conv1d(1, 16, 15, 1, padding=7)),
+ norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
+ norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
+ norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
+ norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
+ norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
+ ]
+ )
+ self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
+
+ def forward(self, x):
+ fmap = []
+
+ for l in self.convs:
+ x = l(x)
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
+ fmap.append(x)
+ x = self.conv_post(x)
+ fmap.append(x)
+ x = torch.flatten(x, 1, -1)
+
+ return x, fmap
+
+
+class DiscriminatorP(torch.nn.Module):
+ def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
+ super(DiscriminatorP, self).__init__()
+ self.period = period
+ self.use_spectral_norm = use_spectral_norm
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
+ self.convs = nn.ModuleList(
+ [
+ norm_f(
+ Conv2d(
+ 1,
+ 32,
+ (kernel_size, 1),
+ (stride, 1),
+ padding=(get_padding(kernel_size, 1), 0),
+ )
+ ),
+ norm_f(
+ Conv2d(
+ 32,
+ 128,
+ (kernel_size, 1),
+ (stride, 1),
+ padding=(get_padding(kernel_size, 1), 0),
+ )
+ ),
+ norm_f(
+ Conv2d(
+ 128,
+ 512,
+ (kernel_size, 1),
+ (stride, 1),
+ padding=(get_padding(kernel_size, 1), 0),
+ )
+ ),
+ norm_f(
+ Conv2d(
+ 512,
+ 1024,
+ (kernel_size, 1),
+ (stride, 1),
+ padding=(get_padding(kernel_size, 1), 0),
+ )
+ ),
+ norm_f(
+ Conv2d(
+ 1024,
+ 1024,
+ (kernel_size, 1),
+ 1,
+ padding=(get_padding(kernel_size, 1), 0),
+ )
+ ),
+ ]
+ )
+ self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
+
+ def forward(self, x):
+ fmap = []
+
+ # 1d to 2d
+ b, c, t = x.shape
+ if t % self.period != 0: # pad first
+ n_pad = self.period - (t % self.period)
+ x = F.pad(x, (0, n_pad), "reflect")
+ t = t + n_pad
+ x = x.view(b, c, t // self.period, self.period)
+
+ for l in self.convs:
+ x = l(x)
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
+ fmap.append(x)
+ x = self.conv_post(x)
+ fmap.append(x)
+ x = torch.flatten(x, 1, -1)
+
+ return x, fmap
diff --git a/infer_pack/models_onnx.py b/infer_pack/models_onnx.py
new file mode 100644
index 0000000000000000000000000000000000000000..3c5be53a572151820de7d82dfce84f2e2979ed56
--- /dev/null
+++ b/infer_pack/models_onnx.py
@@ -0,0 +1,760 @@
+import math, pdb, os
+from time import time as ttime
+import torch
+from torch import nn
+from torch.nn import functional as F
+from infer_pack import modules
+from infer_pack import attentions
+from infer_pack import commons
+from infer_pack.commons import init_weights, get_padding
+from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
+from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
+from infer_pack.commons import init_weights
+import numpy as np
+from infer_pack import commons
+
+
+class TextEncoder256(nn.Module):
+ def __init__(
+ self,
+ out_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ f0=True,
+ ):
+ super().__init__()
+ self.out_channels = out_channels
+ self.hidden_channels = hidden_channels
+ self.filter_channels = filter_channels
+ self.n_heads = n_heads
+ self.n_layers = n_layers
+ self.kernel_size = kernel_size
+ self.p_dropout = p_dropout
+ self.emb_phone = nn.Linear(256, hidden_channels)
+ self.lrelu = nn.LeakyReLU(0.1, inplace=True)
+ if f0 == True:
+ self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
+ self.encoder = attentions.Encoder(
+ hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
+ )
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
+
+ def forward(self, phone, pitch, lengths):
+ if pitch == None:
+ x = self.emb_phone(phone)
+ else:
+ x = self.emb_phone(phone) + self.emb_pitch(pitch)
+ x = x * math.sqrt(self.hidden_channels) # [b, t, h]
+ x = self.lrelu(x)
+ x = torch.transpose(x, 1, -1) # [b, h, t]
+ x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
+ x.dtype
+ )
+ x = self.encoder(x * x_mask, x_mask)
+ stats = self.proj(x) * x_mask
+
+ m, logs = torch.split(stats, self.out_channels, dim=1)
+ return m, logs, x_mask
+
+
+class TextEncoder256Sim(nn.Module):
+ def __init__(
+ self,
+ out_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ f0=True,
+ ):
+ super().__init__()
+ self.out_channels = out_channels
+ self.hidden_channels = hidden_channels
+ self.filter_channels = filter_channels
+ self.n_heads = n_heads
+ self.n_layers = n_layers
+ self.kernel_size = kernel_size
+ self.p_dropout = p_dropout
+ self.emb_phone = nn.Linear(256, hidden_channels)
+ self.lrelu = nn.LeakyReLU(0.1, inplace=True)
+ if f0 == True:
+ self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
+ self.encoder = attentions.Encoder(
+ hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
+ )
+ self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
+
+ def forward(self, phone, pitch, lengths):
+ if pitch == None:
+ x = self.emb_phone(phone)
+ else:
+ x = self.emb_phone(phone) + self.emb_pitch(pitch)
+ x = x * math.sqrt(self.hidden_channels) # [b, t, h]
+ x = self.lrelu(x)
+ x = torch.transpose(x, 1, -1) # [b, h, t]
+ x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
+ x.dtype
+ )
+ x = self.encoder(x * x_mask, x_mask)
+ x = self.proj(x) * x_mask
+ return x, x_mask
+
+
+class ResidualCouplingBlock(nn.Module):
+ def __init__(
+ self,
+ channels,
+ hidden_channels,
+ kernel_size,
+ dilation_rate,
+ n_layers,
+ n_flows=4,
+ gin_channels=0,
+ ):
+ super().__init__()
+ self.channels = channels
+ self.hidden_channels = hidden_channels
+ self.kernel_size = kernel_size
+ self.dilation_rate = dilation_rate
+ self.n_layers = n_layers
+ self.n_flows = n_flows
+ self.gin_channels = gin_channels
+
+ self.flows = nn.ModuleList()
+ for i in range(n_flows):
+ self.flows.append(
+ modules.ResidualCouplingLayer(
+ channels,
+ hidden_channels,
+ kernel_size,
+ dilation_rate,
+ n_layers,
+ gin_channels=gin_channels,
+ mean_only=True,
+ )
+ )
+ self.flows.append(modules.Flip())
+
+ def forward(self, x, x_mask, g=None, reverse=False):
+ if not reverse:
+ for flow in self.flows:
+ x, _ = flow(x, x_mask, g=g, reverse=reverse)
+ else:
+ for flow in reversed(self.flows):
+ x = flow(x, x_mask, g=g, reverse=reverse)
+ return x
+
+ def remove_weight_norm(self):
+ for i in range(self.n_flows):
+ self.flows[i * 2].remove_weight_norm()
+
+
+class PosteriorEncoder(nn.Module):
+ def __init__(
+ self,
+ in_channels,
+ out_channels,
+ hidden_channels,
+ kernel_size,
+ dilation_rate,
+ n_layers,
+ gin_channels=0,
+ ):
+ super().__init__()
+ self.in_channels = in_channels
+ self.out_channels = out_channels
+ self.hidden_channels = hidden_channels
+ self.kernel_size = kernel_size
+ self.dilation_rate = dilation_rate
+ self.n_layers = n_layers
+ self.gin_channels = gin_channels
+
+ self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
+ self.enc = modules.WN(
+ hidden_channels,
+ kernel_size,
+ dilation_rate,
+ n_layers,
+ gin_channels=gin_channels,
+ )
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
+
+ def forward(self, x, x_lengths, g=None):
+ x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(
+ x.dtype
+ )
+ x = self.pre(x) * x_mask
+ x = self.enc(x, x_mask, g=g)
+ stats = self.proj(x) * x_mask
+ m, logs = torch.split(stats, self.out_channels, dim=1)
+ z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
+ return z, m, logs, x_mask
+
+ def remove_weight_norm(self):
+ self.enc.remove_weight_norm()
+
+
+class Generator(torch.nn.Module):
+ def __init__(
+ self,
+ initial_channel,
+ resblock,
+ resblock_kernel_sizes,
+ resblock_dilation_sizes,
+ upsample_rates,
+ upsample_initial_channel,
+ upsample_kernel_sizes,
+ gin_channels=0,
+ ):
+ super(Generator, self).__init__()
+ self.num_kernels = len(resblock_kernel_sizes)
+ self.num_upsamples = len(upsample_rates)
+ self.conv_pre = Conv1d(
+ initial_channel, upsample_initial_channel, 7, 1, padding=3
+ )
+ resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
+
+ self.ups = nn.ModuleList()
+ for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
+ self.ups.append(
+ weight_norm(
+ ConvTranspose1d(
+ upsample_initial_channel // (2**i),
+ upsample_initial_channel // (2 ** (i + 1)),
+ k,
+ u,
+ padding=(k - u) // 2,
+ )
+ )
+ )
+
+ self.resblocks = nn.ModuleList()
+ for i in range(len(self.ups)):
+ ch = upsample_initial_channel // (2 ** (i + 1))
+ for j, (k, d) in enumerate(
+ zip(resblock_kernel_sizes, resblock_dilation_sizes)
+ ):
+ self.resblocks.append(resblock(ch, k, d))
+
+ self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
+ self.ups.apply(init_weights)
+
+ if gin_channels != 0:
+ self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
+
+ def forward(self, x, g=None):
+ x = self.conv_pre(x)
+ if g is not None:
+ x = x + self.cond(g)
+
+ for i in range(self.num_upsamples):
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
+ x = self.ups[i](x)
+ xs = None
+ for j in range(self.num_kernels):
+ if xs is None:
+ xs = self.resblocks[i * self.num_kernels + j](x)
+ else:
+ xs += self.resblocks[i * self.num_kernels + j](x)
+ x = xs / self.num_kernels
+ x = F.leaky_relu(x)
+ x = self.conv_post(x)
+ x = torch.tanh(x)
+
+ return x
+
+ def remove_weight_norm(self):
+ for l in self.ups:
+ remove_weight_norm(l)
+ for l in self.resblocks:
+ l.remove_weight_norm()
+
+
+class SineGen(torch.nn.Module):
+ """Definition of sine generator
+ SineGen(samp_rate, harmonic_num = 0,
+ sine_amp = 0.1, noise_std = 0.003,
+ voiced_threshold = 0,
+ flag_for_pulse=False)
+ samp_rate: sampling rate in Hz
+ harmonic_num: number of harmonic overtones (default 0)
+ sine_amp: amplitude of sine-wavefrom (default 0.1)
+ noise_std: std of Gaussian noise (default 0.003)
+ voiced_thoreshold: F0 threshold for U/V classification (default 0)
+ flag_for_pulse: this SinGen is used inside PulseGen (default False)
+ Note: when flag_for_pulse is True, the first time step of a voiced
+ segment is always sin(np.pi) or cos(0)
+ """
+
+ def __init__(
+ self,
+ samp_rate,
+ harmonic_num=0,
+ sine_amp=0.1,
+ noise_std=0.003,
+ voiced_threshold=0,
+ flag_for_pulse=False,
+ ):
+ super(SineGen, self).__init__()
+ self.sine_amp = sine_amp
+ self.noise_std = noise_std
+ self.harmonic_num = harmonic_num
+ self.dim = self.harmonic_num + 1
+ self.sampling_rate = samp_rate
+ self.voiced_threshold = voiced_threshold
+
+ def _f02uv(self, f0):
+ # generate uv signal
+ uv = torch.ones_like(f0)
+ uv = uv * (f0 > self.voiced_threshold)
+ return uv
+
+ def forward(self, f0, upp):
+ """sine_tensor, uv = forward(f0)
+ input F0: tensor(batchsize=1, length, dim=1)
+ f0 for unvoiced steps should be 0
+ output sine_tensor: tensor(batchsize=1, length, dim)
+ output uv: tensor(batchsize=1, length, 1)
+ """
+ with torch.no_grad():
+ f0 = f0[:, None].transpose(1, 2)
+ f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim, device=f0.device)
+ # fundamental component
+ f0_buf[:, :, 0] = f0[:, :, 0]
+ for idx in np.arange(self.harmonic_num):
+ f0_buf[:, :, idx + 1] = f0_buf[:, :, 0] * (
+ idx + 2
+ ) # idx + 2: the (idx+1)-th overtone, (idx+2)-th harmonic
+ rad_values = (f0_buf / self.sampling_rate) % 1 ###%1意味着n_har的乘积无法后处理优化
+ rand_ini = torch.rand(
+ f0_buf.shape[0], f0_buf.shape[2], device=f0_buf.device
+ )
+ rand_ini[:, 0] = 0
+ rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
+ tmp_over_one = torch.cumsum(rad_values, 1) # % 1 #####%1意味着后面的cumsum无法再优化
+ tmp_over_one *= upp
+ tmp_over_one = F.interpolate(
+ tmp_over_one.transpose(2, 1),
+ scale_factor=upp,
+ mode="linear",
+ align_corners=True,
+ ).transpose(2, 1)
+ rad_values = F.interpolate(
+ rad_values.transpose(2, 1), scale_factor=upp, mode="nearest"
+ ).transpose(
+ 2, 1
+ ) #######
+ tmp_over_one %= 1
+ tmp_over_one_idx = (tmp_over_one[:, 1:, :] - tmp_over_one[:, :-1, :]) < 0
+ cumsum_shift = torch.zeros_like(rad_values)
+ cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
+ sine_waves = torch.sin(
+ torch.cumsum(rad_values + cumsum_shift, dim=1) * 2 * np.pi
+ )
+ sine_waves = sine_waves * self.sine_amp
+ uv = self._f02uv(f0)
+ uv = F.interpolate(
+ uv.transpose(2, 1), scale_factor=upp, mode="nearest"
+ ).transpose(2, 1)
+ noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
+ noise = noise_amp * torch.randn_like(sine_waves)
+ sine_waves = sine_waves * uv + noise
+ return sine_waves, uv, noise
+
+
+class SourceModuleHnNSF(torch.nn.Module):
+ """SourceModule for hn-nsf
+ SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
+ add_noise_std=0.003, voiced_threshod=0)
+ sampling_rate: sampling_rate in Hz
+ harmonic_num: number of harmonic above F0 (default: 0)
+ sine_amp: amplitude of sine source signal (default: 0.1)
+ add_noise_std: std of additive Gaussian noise (default: 0.003)
+ note that amplitude of noise in unvoiced is decided
+ by sine_amp
+ voiced_threshold: threhold to set U/V given F0 (default: 0)
+ Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
+ F0_sampled (batchsize, length, 1)
+ Sine_source (batchsize, length, 1)
+ noise_source (batchsize, length 1)
+ uv (batchsize, length, 1)
+ """
+
+ def __init__(
+ self,
+ sampling_rate,
+ harmonic_num=0,
+ sine_amp=0.1,
+ add_noise_std=0.003,
+ voiced_threshod=0,
+ is_half=True,
+ ):
+ super(SourceModuleHnNSF, self).__init__()
+
+ self.sine_amp = sine_amp
+ self.noise_std = add_noise_std
+ self.is_half = is_half
+ # to produce sine waveforms
+ self.l_sin_gen = SineGen(
+ sampling_rate, harmonic_num, sine_amp, add_noise_std, voiced_threshod
+ )
+
+ # to merge source harmonics into a single excitation
+ self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
+ self.l_tanh = torch.nn.Tanh()
+
+ def forward(self, x, upp=None):
+ sine_wavs, uv, _ = self.l_sin_gen(x, upp)
+ if self.is_half:
+ sine_wavs = sine_wavs.half()
+ sine_merge = self.l_tanh(self.l_linear(sine_wavs))
+ return sine_merge, None, None # noise, uv
+
+
+class GeneratorNSF(torch.nn.Module):
+ def __init__(
+ self,
+ initial_channel,
+ resblock,
+ resblock_kernel_sizes,
+ resblock_dilation_sizes,
+ upsample_rates,
+ upsample_initial_channel,
+ upsample_kernel_sizes,
+ gin_channels,
+ sr,
+ is_half=False,
+ ):
+ super(GeneratorNSF, self).__init__()
+ self.num_kernels = len(resblock_kernel_sizes)
+ self.num_upsamples = len(upsample_rates)
+
+ self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates))
+ self.m_source = SourceModuleHnNSF(
+ sampling_rate=sr, harmonic_num=0, is_half=is_half
+ )
+ self.noise_convs = nn.ModuleList()
+ self.conv_pre = Conv1d(
+ initial_channel, upsample_initial_channel, 7, 1, padding=3
+ )
+ resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
+
+ self.ups = nn.ModuleList()
+ for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
+ c_cur = upsample_initial_channel // (2 ** (i + 1))
+ self.ups.append(
+ weight_norm(
+ ConvTranspose1d(
+ upsample_initial_channel // (2**i),
+ upsample_initial_channel // (2 ** (i + 1)),
+ k,
+ u,
+ padding=(k - u) // 2,
+ )
+ )
+ )
+ if i + 1 < len(upsample_rates):
+ stride_f0 = np.prod(upsample_rates[i + 1 :])
+ self.noise_convs.append(
+ Conv1d(
+ 1,
+ c_cur,
+ kernel_size=stride_f0 * 2,
+ stride=stride_f0,
+ padding=stride_f0 // 2,
+ )
+ )
+ else:
+ self.noise_convs.append(Conv1d(1, c_cur, kernel_size=1))
+
+ self.resblocks = nn.ModuleList()
+ for i in range(len(self.ups)):
+ ch = upsample_initial_channel // (2 ** (i + 1))
+ for j, (k, d) in enumerate(
+ zip(resblock_kernel_sizes, resblock_dilation_sizes)
+ ):
+ self.resblocks.append(resblock(ch, k, d))
+
+ self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
+ self.ups.apply(init_weights)
+
+ if gin_channels != 0:
+ self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
+
+ self.upp = np.prod(upsample_rates)
+
+ def forward(self, x, f0, g=None):
+ har_source, noi_source, uv = self.m_source(f0, self.upp)
+ har_source = har_source.transpose(1, 2)
+ x = self.conv_pre(x)
+ if g is not None:
+ x = x + self.cond(g)
+
+ for i in range(self.num_upsamples):
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
+ x = self.ups[i](x)
+ x_source = self.noise_convs[i](har_source)
+ x = x + x_source
+ xs = None
+ for j in range(self.num_kernels):
+ if xs is None:
+ xs = self.resblocks[i * self.num_kernels + j](x)
+ else:
+ xs += self.resblocks[i * self.num_kernels + j](x)
+ x = xs / self.num_kernels
+ x = F.leaky_relu(x)
+ x = self.conv_post(x)
+ x = torch.tanh(x)
+ return x
+
+ def remove_weight_norm(self):
+ for l in self.ups:
+ remove_weight_norm(l)
+ for l in self.resblocks:
+ l.remove_weight_norm()
+
+
+sr2sr = {
+ "32k": 32000,
+ "40k": 40000,
+ "48k": 48000,
+}
+
+
+class SynthesizerTrnMs256NSFsidO(nn.Module):
+ def __init__(
+ self,
+ spec_channels,
+ segment_size,
+ inter_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ resblock,
+ resblock_kernel_sizes,
+ resblock_dilation_sizes,
+ upsample_rates,
+ upsample_initial_channel,
+ upsample_kernel_sizes,
+ spk_embed_dim,
+ gin_channels,
+ sr,
+ **kwargs
+ ):
+ super().__init__()
+ if type(sr) == type("strr"):
+ sr = sr2sr[sr]
+ self.spec_channels = spec_channels
+ self.inter_channels = inter_channels
+ self.hidden_channels = hidden_channels
+ self.filter_channels = filter_channels
+ self.n_heads = n_heads
+ self.n_layers = n_layers
+ self.kernel_size = kernel_size
+ self.p_dropout = p_dropout
+ self.resblock = resblock
+ self.resblock_kernel_sizes = resblock_kernel_sizes
+ self.resblock_dilation_sizes = resblock_dilation_sizes
+ self.upsample_rates = upsample_rates
+ self.upsample_initial_channel = upsample_initial_channel
+ self.upsample_kernel_sizes = upsample_kernel_sizes
+ self.segment_size = segment_size
+ self.gin_channels = gin_channels
+ # self.hop_length = hop_length#
+ self.spk_embed_dim = spk_embed_dim
+ self.enc_p = TextEncoder256(
+ inter_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ )
+ self.dec = GeneratorNSF(
+ inter_channels,
+ resblock,
+ resblock_kernel_sizes,
+ resblock_dilation_sizes,
+ upsample_rates,
+ upsample_initial_channel,
+ upsample_kernel_sizes,
+ gin_channels=gin_channels,
+ sr=sr,
+ is_half=kwargs["is_half"],
+ )
+ self.enc_q = PosteriorEncoder(
+ spec_channels,
+ inter_channels,
+ hidden_channels,
+ 5,
+ 1,
+ 16,
+ gin_channels=gin_channels,
+ )
+ self.flow = ResidualCouplingBlock(
+ inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
+ )
+ self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
+ print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
+
+ def remove_weight_norm(self):
+ self.dec.remove_weight_norm()
+ self.flow.remove_weight_norm()
+ self.enc_q.remove_weight_norm()
+
+ def forward(self, phone, phone_lengths, pitch, nsff0, sid, max_len=None):
+ g = self.emb_g(sid).unsqueeze(-1)
+ m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
+ z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
+ z = self.flow(z_p, x_mask, g=g, reverse=True)
+ o = self.dec((z * x_mask)[:, :, :max_len], nsff0, g=g)
+ return o
+
+
+class MultiPeriodDiscriminator(torch.nn.Module):
+ def __init__(self, use_spectral_norm=False):
+ super(MultiPeriodDiscriminator, self).__init__()
+ periods = [2, 3, 5, 7, 11, 17]
+ # periods = [3, 5, 7, 11, 17, 23, 37]
+
+ discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
+ discs = discs + [
+ DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods
+ ]
+ self.discriminators = nn.ModuleList(discs)
+
+ def forward(self, y, y_hat):
+ y_d_rs = [] #
+ y_d_gs = []
+ fmap_rs = []
+ fmap_gs = []
+ for i, d in enumerate(self.discriminators):
+ y_d_r, fmap_r = d(y)
+ y_d_g, fmap_g = d(y_hat)
+ # for j in range(len(fmap_r)):
+ # print(i,j,y.shape,y_hat.shape,fmap_r[j].shape,fmap_g[j].shape)
+ y_d_rs.append(y_d_r)
+ y_d_gs.append(y_d_g)
+ fmap_rs.append(fmap_r)
+ fmap_gs.append(fmap_g)
+
+ return y_d_rs, y_d_gs, fmap_rs, fmap_gs
+
+
+class DiscriminatorS(torch.nn.Module):
+ def __init__(self, use_spectral_norm=False):
+ super(DiscriminatorS, self).__init__()
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
+ self.convs = nn.ModuleList(
+ [
+ norm_f(Conv1d(1, 16, 15, 1, padding=7)),
+ norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
+ norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
+ norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
+ norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
+ norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
+ ]
+ )
+ self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
+
+ def forward(self, x):
+ fmap = []
+
+ for l in self.convs:
+ x = l(x)
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
+ fmap.append(x)
+ x = self.conv_post(x)
+ fmap.append(x)
+ x = torch.flatten(x, 1, -1)
+
+ return x, fmap
+
+
+class DiscriminatorP(torch.nn.Module):
+ def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
+ super(DiscriminatorP, self).__init__()
+ self.period = period
+ self.use_spectral_norm = use_spectral_norm
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
+ self.convs = nn.ModuleList(
+ [
+ norm_f(
+ Conv2d(
+ 1,
+ 32,
+ (kernel_size, 1),
+ (stride, 1),
+ padding=(get_padding(kernel_size, 1), 0),
+ )
+ ),
+ norm_f(
+ Conv2d(
+ 32,
+ 128,
+ (kernel_size, 1),
+ (stride, 1),
+ padding=(get_padding(kernel_size, 1), 0),
+ )
+ ),
+ norm_f(
+ Conv2d(
+ 128,
+ 512,
+ (kernel_size, 1),
+ (stride, 1),
+ padding=(get_padding(kernel_size, 1), 0),
+ )
+ ),
+ norm_f(
+ Conv2d(
+ 512,
+ 1024,
+ (kernel_size, 1),
+ (stride, 1),
+ padding=(get_padding(kernel_size, 1), 0),
+ )
+ ),
+ norm_f(
+ Conv2d(
+ 1024,
+ 1024,
+ (kernel_size, 1),
+ 1,
+ padding=(get_padding(kernel_size, 1), 0),
+ )
+ ),
+ ]
+ )
+ self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
+
+ def forward(self, x):
+ fmap = []
+
+ # 1d to 2d
+ b, c, t = x.shape
+ if t % self.period != 0: # pad first
+ n_pad = self.period - (t % self.period)
+ x = F.pad(x, (0, n_pad), "reflect")
+ t = t + n_pad
+ x = x.view(b, c, t // self.period, self.period)
+
+ for l in self.convs:
+ x = l(x)
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
+ fmap.append(x)
+ x = self.conv_post(x)
+ fmap.append(x)
+ x = torch.flatten(x, 1, -1)
+
+ return x, fmap
diff --git a/infer_pack/models_onnx_moess.py b/infer_pack/models_onnx_moess.py
new file mode 100644
index 0000000000000000000000000000000000000000..12efb0629a2e3d0d746a34f467254536c2bdbe5f
--- /dev/null
+++ b/infer_pack/models_onnx_moess.py
@@ -0,0 +1,849 @@
+import math, pdb, os
+from time import time as ttime
+import torch
+from torch import nn
+from torch.nn import functional as F
+from infer_pack import modules
+from infer_pack import attentions
+from infer_pack import commons
+from infer_pack.commons import init_weights, get_padding
+from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
+from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
+from infer_pack.commons import init_weights
+import numpy as np
+from infer_pack import commons
+
+
+class TextEncoder256(nn.Module):
+ def __init__(
+ self,
+ out_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ f0=True,
+ ):
+ super().__init__()
+ self.out_channels = out_channels
+ self.hidden_channels = hidden_channels
+ self.filter_channels = filter_channels
+ self.n_heads = n_heads
+ self.n_layers = n_layers
+ self.kernel_size = kernel_size
+ self.p_dropout = p_dropout
+ self.emb_phone = nn.Linear(256, hidden_channels)
+ self.lrelu = nn.LeakyReLU(0.1, inplace=True)
+ if f0 == True:
+ self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
+ self.encoder = attentions.Encoder(
+ hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
+ )
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
+
+ def forward(self, phone, pitch, lengths):
+ if pitch == None:
+ x = self.emb_phone(phone)
+ else:
+ x = self.emb_phone(phone) + self.emb_pitch(pitch)
+ x = x * math.sqrt(self.hidden_channels) # [b, t, h]
+ x = self.lrelu(x)
+ x = torch.transpose(x, 1, -1) # [b, h, t]
+ x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
+ x.dtype
+ )
+ x = self.encoder(x * x_mask, x_mask)
+ stats = self.proj(x) * x_mask
+
+ m, logs = torch.split(stats, self.out_channels, dim=1)
+ return m, logs, x_mask
+
+
+class TextEncoder256Sim(nn.Module):
+ def __init__(
+ self,
+ out_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ f0=True,
+ ):
+ super().__init__()
+ self.out_channels = out_channels
+ self.hidden_channels = hidden_channels
+ self.filter_channels = filter_channels
+ self.n_heads = n_heads
+ self.n_layers = n_layers
+ self.kernel_size = kernel_size
+ self.p_dropout = p_dropout
+ self.emb_phone = nn.Linear(256, hidden_channels)
+ self.lrelu = nn.LeakyReLU(0.1, inplace=True)
+ if f0 == True:
+ self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
+ self.encoder = attentions.Encoder(
+ hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
+ )
+ self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
+
+ def forward(self, phone, pitch, lengths):
+ if pitch == None:
+ x = self.emb_phone(phone)
+ else:
+ x = self.emb_phone(phone) + self.emb_pitch(pitch)
+ x = x * math.sqrt(self.hidden_channels) # [b, t, h]
+ x = self.lrelu(x)
+ x = torch.transpose(x, 1, -1) # [b, h, t]
+ x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
+ x.dtype
+ )
+ x = self.encoder(x * x_mask, x_mask)
+ x = self.proj(x) * x_mask
+ return x, x_mask
+
+
+class ResidualCouplingBlock(nn.Module):
+ def __init__(
+ self,
+ channels,
+ hidden_channels,
+ kernel_size,
+ dilation_rate,
+ n_layers,
+ n_flows=4,
+ gin_channels=0,
+ ):
+ super().__init__()
+ self.channels = channels
+ self.hidden_channels = hidden_channels
+ self.kernel_size = kernel_size
+ self.dilation_rate = dilation_rate
+ self.n_layers = n_layers
+ self.n_flows = n_flows
+ self.gin_channels = gin_channels
+
+ self.flows = nn.ModuleList()
+ for i in range(n_flows):
+ self.flows.append(
+ modules.ResidualCouplingLayer(
+ channels,
+ hidden_channels,
+ kernel_size,
+ dilation_rate,
+ n_layers,
+ gin_channels=gin_channels,
+ mean_only=True,
+ )
+ )
+ self.flows.append(modules.Flip())
+
+ def forward(self, x, x_mask, g=None, reverse=False):
+ if not reverse:
+ for flow in self.flows:
+ x, _ = flow(x, x_mask, g=g, reverse=reverse)
+ else:
+ for flow in reversed(self.flows):
+ x = flow(x, x_mask, g=g, reverse=reverse)
+ return x
+
+ def remove_weight_norm(self):
+ for i in range(self.n_flows):
+ self.flows[i * 2].remove_weight_norm()
+
+
+class PosteriorEncoder(nn.Module):
+ def __init__(
+ self,
+ in_channels,
+ out_channels,
+ hidden_channels,
+ kernel_size,
+ dilation_rate,
+ n_layers,
+ gin_channels=0,
+ ):
+ super().__init__()
+ self.in_channels = in_channels
+ self.out_channels = out_channels
+ self.hidden_channels = hidden_channels
+ self.kernel_size = kernel_size
+ self.dilation_rate = dilation_rate
+ self.n_layers = n_layers
+ self.gin_channels = gin_channels
+
+ self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
+ self.enc = modules.WN(
+ hidden_channels,
+ kernel_size,
+ dilation_rate,
+ n_layers,
+ gin_channels=gin_channels,
+ )
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
+
+ def forward(self, x, x_lengths, g=None):
+ x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(
+ x.dtype
+ )
+ x = self.pre(x) * x_mask
+ x = self.enc(x, x_mask, g=g)
+ stats = self.proj(x) * x_mask
+ m, logs = torch.split(stats, self.out_channels, dim=1)
+ z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
+ return z, m, logs, x_mask
+
+ def remove_weight_norm(self):
+ self.enc.remove_weight_norm()
+
+
+class Generator(torch.nn.Module):
+ def __init__(
+ self,
+ initial_channel,
+ resblock,
+ resblock_kernel_sizes,
+ resblock_dilation_sizes,
+ upsample_rates,
+ upsample_initial_channel,
+ upsample_kernel_sizes,
+ gin_channels=0,
+ ):
+ super(Generator, self).__init__()
+ self.num_kernels = len(resblock_kernel_sizes)
+ self.num_upsamples = len(upsample_rates)
+ self.conv_pre = Conv1d(
+ initial_channel, upsample_initial_channel, 7, 1, padding=3
+ )
+ resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
+
+ self.ups = nn.ModuleList()
+ for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
+ self.ups.append(
+ weight_norm(
+ ConvTranspose1d(
+ upsample_initial_channel // (2**i),
+ upsample_initial_channel // (2 ** (i + 1)),
+ k,
+ u,
+ padding=(k - u) // 2,
+ )
+ )
+ )
+
+ self.resblocks = nn.ModuleList()
+ for i in range(len(self.ups)):
+ ch = upsample_initial_channel // (2 ** (i + 1))
+ for j, (k, d) in enumerate(
+ zip(resblock_kernel_sizes, resblock_dilation_sizes)
+ ):
+ self.resblocks.append(resblock(ch, k, d))
+
+ self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
+ self.ups.apply(init_weights)
+
+ if gin_channels != 0:
+ self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
+
+ def forward(self, x, g=None):
+ x = self.conv_pre(x)
+ if g is not None:
+ x = x + self.cond(g)
+
+ for i in range(self.num_upsamples):
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
+ x = self.ups[i](x)
+ xs = None
+ for j in range(self.num_kernels):
+ if xs is None:
+ xs = self.resblocks[i * self.num_kernels + j](x)
+ else:
+ xs += self.resblocks[i * self.num_kernels + j](x)
+ x = xs / self.num_kernels
+ x = F.leaky_relu(x)
+ x = self.conv_post(x)
+ x = torch.tanh(x)
+
+ return x
+
+ def remove_weight_norm(self):
+ for l in self.ups:
+ remove_weight_norm(l)
+ for l in self.resblocks:
+ l.remove_weight_norm()
+
+
+class SineGen(torch.nn.Module):
+ """Definition of sine generator
+ SineGen(samp_rate, harmonic_num = 0,
+ sine_amp = 0.1, noise_std = 0.003,
+ voiced_threshold = 0,
+ flag_for_pulse=False)
+ samp_rate: sampling rate in Hz
+ harmonic_num: number of harmonic overtones (default 0)
+ sine_amp: amplitude of sine-wavefrom (default 0.1)
+ noise_std: std of Gaussian noise (default 0.003)
+ voiced_thoreshold: F0 threshold for U/V classification (default 0)
+ flag_for_pulse: this SinGen is used inside PulseGen (default False)
+ Note: when flag_for_pulse is True, the first time step of a voiced
+ segment is always sin(np.pi) or cos(0)
+ """
+
+ def __init__(
+ self,
+ samp_rate,
+ harmonic_num=0,
+ sine_amp=0.1,
+ noise_std=0.003,
+ voiced_threshold=0,
+ flag_for_pulse=False,
+ ):
+ super(SineGen, self).__init__()
+ self.sine_amp = sine_amp
+ self.noise_std = noise_std
+ self.harmonic_num = harmonic_num
+ self.dim = self.harmonic_num + 1
+ self.sampling_rate = samp_rate
+ self.voiced_threshold = voiced_threshold
+
+ def _f02uv(self, f0):
+ # generate uv signal
+ uv = torch.ones_like(f0)
+ uv = uv * (f0 > self.voiced_threshold)
+ return uv
+
+ def forward(self, f0, upp):
+ """sine_tensor, uv = forward(f0)
+ input F0: tensor(batchsize=1, length, dim=1)
+ f0 for unvoiced steps should be 0
+ output sine_tensor: tensor(batchsize=1, length, dim)
+ output uv: tensor(batchsize=1, length, 1)
+ """
+ with torch.no_grad():
+ f0 = f0[:, None].transpose(1, 2)
+ f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim, device=f0.device)
+ # fundamental component
+ f0_buf[:, :, 0] = f0[:, :, 0]
+ for idx in np.arange(self.harmonic_num):
+ f0_buf[:, :, idx + 1] = f0_buf[:, :, 0] * (
+ idx + 2
+ ) # idx + 2: the (idx+1)-th overtone, (idx+2)-th harmonic
+ rad_values = (f0_buf / self.sampling_rate) % 1 ###%1意味着n_har的乘积无法后处理优化
+ rand_ini = torch.rand(
+ f0_buf.shape[0], f0_buf.shape[2], device=f0_buf.device
+ )
+ rand_ini[:, 0] = 0
+ rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
+ tmp_over_one = torch.cumsum(rad_values, 1) # % 1 #####%1意味着后面的cumsum无法再优化
+ tmp_over_one *= upp
+ tmp_over_one = F.interpolate(
+ tmp_over_one.transpose(2, 1),
+ scale_factor=upp,
+ mode="linear",
+ align_corners=True,
+ ).transpose(2, 1)
+ rad_values = F.interpolate(
+ rad_values.transpose(2, 1), scale_factor=upp, mode="nearest"
+ ).transpose(
+ 2, 1
+ ) #######
+ tmp_over_one %= 1
+ tmp_over_one_idx = (tmp_over_one[:, 1:, :] - tmp_over_one[:, :-1, :]) < 0
+ cumsum_shift = torch.zeros_like(rad_values)
+ cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
+ sine_waves = torch.sin(
+ torch.cumsum(rad_values + cumsum_shift, dim=1) * 2 * np.pi
+ )
+ sine_waves = sine_waves * self.sine_amp
+ uv = self._f02uv(f0)
+ uv = F.interpolate(
+ uv.transpose(2, 1), scale_factor=upp, mode="nearest"
+ ).transpose(2, 1)
+ noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
+ noise = noise_amp * torch.randn_like(sine_waves)
+ sine_waves = sine_waves * uv + noise
+ return sine_waves, uv, noise
+
+
+class SourceModuleHnNSF(torch.nn.Module):
+ """SourceModule for hn-nsf
+ SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
+ add_noise_std=0.003, voiced_threshod=0)
+ sampling_rate: sampling_rate in Hz
+ harmonic_num: number of harmonic above F0 (default: 0)
+ sine_amp: amplitude of sine source signal (default: 0.1)
+ add_noise_std: std of additive Gaussian noise (default: 0.003)
+ note that amplitude of noise in unvoiced is decided
+ by sine_amp
+ voiced_threshold: threhold to set U/V given F0 (default: 0)
+ Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
+ F0_sampled (batchsize, length, 1)
+ Sine_source (batchsize, length, 1)
+ noise_source (batchsize, length 1)
+ uv (batchsize, length, 1)
+ """
+
+ def __init__(
+ self,
+ sampling_rate,
+ harmonic_num=0,
+ sine_amp=0.1,
+ add_noise_std=0.003,
+ voiced_threshod=0,
+ is_half=True,
+ ):
+ super(SourceModuleHnNSF, self).__init__()
+
+ self.sine_amp = sine_amp
+ self.noise_std = add_noise_std
+ self.is_half = is_half
+ # to produce sine waveforms
+ self.l_sin_gen = SineGen(
+ sampling_rate, harmonic_num, sine_amp, add_noise_std, voiced_threshod
+ )
+
+ # to merge source harmonics into a single excitation
+ self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
+ self.l_tanh = torch.nn.Tanh()
+
+ def forward(self, x, upp=None):
+ sine_wavs, uv, _ = self.l_sin_gen(x, upp)
+ if self.is_half:
+ sine_wavs = sine_wavs.half()
+ sine_merge = self.l_tanh(self.l_linear(sine_wavs))
+ return sine_merge, None, None # noise, uv
+
+
+class GeneratorNSF(torch.nn.Module):
+ def __init__(
+ self,
+ initial_channel,
+ resblock,
+ resblock_kernel_sizes,
+ resblock_dilation_sizes,
+ upsample_rates,
+ upsample_initial_channel,
+ upsample_kernel_sizes,
+ gin_channels,
+ sr,
+ is_half=False,
+ ):
+ super(GeneratorNSF, self).__init__()
+ self.num_kernels = len(resblock_kernel_sizes)
+ self.num_upsamples = len(upsample_rates)
+
+ self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates))
+ self.m_source = SourceModuleHnNSF(
+ sampling_rate=sr, harmonic_num=0, is_half=is_half
+ )
+ self.noise_convs = nn.ModuleList()
+ self.conv_pre = Conv1d(
+ initial_channel, upsample_initial_channel, 7, 1, padding=3
+ )
+ resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
+
+ self.ups = nn.ModuleList()
+ for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
+ c_cur = upsample_initial_channel // (2 ** (i + 1))
+ self.ups.append(
+ weight_norm(
+ ConvTranspose1d(
+ upsample_initial_channel // (2**i),
+ upsample_initial_channel // (2 ** (i + 1)),
+ k,
+ u,
+ padding=(k - u) // 2,
+ )
+ )
+ )
+ if i + 1 < len(upsample_rates):
+ stride_f0 = np.prod(upsample_rates[i + 1 :])
+ self.noise_convs.append(
+ Conv1d(
+ 1,
+ c_cur,
+ kernel_size=stride_f0 * 2,
+ stride=stride_f0,
+ padding=stride_f0 // 2,
+ )
+ )
+ else:
+ self.noise_convs.append(Conv1d(1, c_cur, kernel_size=1))
+
+ self.resblocks = nn.ModuleList()
+ for i in range(len(self.ups)):
+ ch = upsample_initial_channel // (2 ** (i + 1))
+ for j, (k, d) in enumerate(
+ zip(resblock_kernel_sizes, resblock_dilation_sizes)
+ ):
+ self.resblocks.append(resblock(ch, k, d))
+
+ self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
+ self.ups.apply(init_weights)
+
+ if gin_channels != 0:
+ self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
+
+ self.upp = np.prod(upsample_rates)
+
+ def forward(self, x, f0, g=None):
+ har_source, noi_source, uv = self.m_source(f0, self.upp)
+ har_source = har_source.transpose(1, 2)
+ x = self.conv_pre(x)
+ if g is not None:
+ x = x + self.cond(g)
+
+ for i in range(self.num_upsamples):
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
+ x = self.ups[i](x)
+ x_source = self.noise_convs[i](har_source)
+ x = x + x_source
+ xs = None
+ for j in range(self.num_kernels):
+ if xs is None:
+ xs = self.resblocks[i * self.num_kernels + j](x)
+ else:
+ xs += self.resblocks[i * self.num_kernels + j](x)
+ x = xs / self.num_kernels
+ x = F.leaky_relu(x)
+ x = self.conv_post(x)
+ x = torch.tanh(x)
+ return x
+
+ def remove_weight_norm(self):
+ for l in self.ups:
+ remove_weight_norm(l)
+ for l in self.resblocks:
+ l.remove_weight_norm()
+
+
+sr2sr = {
+ "32k": 32000,
+ "40k": 40000,
+ "48k": 48000,
+}
+
+
+class SynthesizerTrnMs256NSFsidM(nn.Module):
+ def __init__(
+ self,
+ spec_channels,
+ segment_size,
+ inter_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ resblock,
+ resblock_kernel_sizes,
+ resblock_dilation_sizes,
+ upsample_rates,
+ upsample_initial_channel,
+ upsample_kernel_sizes,
+ spk_embed_dim,
+ gin_channels,
+ sr,
+ **kwargs
+ ):
+ super().__init__()
+ if type(sr) == type("strr"):
+ sr = sr2sr[sr]
+ self.spec_channels = spec_channels
+ self.inter_channels = inter_channels
+ self.hidden_channels = hidden_channels
+ self.filter_channels = filter_channels
+ self.n_heads = n_heads
+ self.n_layers = n_layers
+ self.kernel_size = kernel_size
+ self.p_dropout = p_dropout
+ self.resblock = resblock
+ self.resblock_kernel_sizes = resblock_kernel_sizes
+ self.resblock_dilation_sizes = resblock_dilation_sizes
+ self.upsample_rates = upsample_rates
+ self.upsample_initial_channel = upsample_initial_channel
+ self.upsample_kernel_sizes = upsample_kernel_sizes
+ self.segment_size = segment_size
+ self.gin_channels = gin_channels
+ # self.hop_length = hop_length#
+ self.spk_embed_dim = spk_embed_dim
+ self.enc_p = TextEncoder256(
+ inter_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ )
+ self.dec = GeneratorNSF(
+ inter_channels,
+ resblock,
+ resblock_kernel_sizes,
+ resblock_dilation_sizes,
+ upsample_rates,
+ upsample_initial_channel,
+ upsample_kernel_sizes,
+ gin_channels=gin_channels,
+ sr=sr,
+ is_half=kwargs["is_half"],
+ )
+ self.enc_q = PosteriorEncoder(
+ spec_channels,
+ inter_channels,
+ hidden_channels,
+ 5,
+ 1,
+ 16,
+ gin_channels=gin_channels,
+ )
+ self.flow = ResidualCouplingBlock(
+ inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
+ )
+ self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
+ print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
+
+ def remove_weight_norm(self):
+ self.dec.remove_weight_norm()
+ self.flow.remove_weight_norm()
+ self.enc_q.remove_weight_norm()
+
+ def forward(self, phone, phone_lengths, pitch, nsff0, sid, rnd, max_len=None):
+ g = self.emb_g(sid).unsqueeze(-1)
+ m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
+ z_p = (m_p + torch.exp(logs_p) * rnd) * x_mask
+ z = self.flow(z_p, x_mask, g=g, reverse=True)
+ o = self.dec((z * x_mask)[:, :, :max_len], nsff0, g=g)
+ return o
+
+
+class SynthesizerTrnMs256NSFsid_sim(nn.Module):
+ """
+ Synthesizer for Training
+ """
+
+ def __init__(
+ self,
+ spec_channels,
+ segment_size,
+ inter_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ resblock,
+ resblock_kernel_sizes,
+ resblock_dilation_sizes,
+ upsample_rates,
+ upsample_initial_channel,
+ upsample_kernel_sizes,
+ spk_embed_dim,
+ # hop_length,
+ gin_channels=0,
+ use_sdp=True,
+ **kwargs
+ ):
+ super().__init__()
+ self.spec_channels = spec_channels
+ self.inter_channels = inter_channels
+ self.hidden_channels = hidden_channels
+ self.filter_channels = filter_channels
+ self.n_heads = n_heads
+ self.n_layers = n_layers
+ self.kernel_size = kernel_size
+ self.p_dropout = p_dropout
+ self.resblock = resblock
+ self.resblock_kernel_sizes = resblock_kernel_sizes
+ self.resblock_dilation_sizes = resblock_dilation_sizes
+ self.upsample_rates = upsample_rates
+ self.upsample_initial_channel = upsample_initial_channel
+ self.upsample_kernel_sizes = upsample_kernel_sizes
+ self.segment_size = segment_size
+ self.gin_channels = gin_channels
+ # self.hop_length = hop_length#
+ self.spk_embed_dim = spk_embed_dim
+ self.enc_p = TextEncoder256Sim(
+ inter_channels,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size,
+ p_dropout,
+ )
+ self.dec = GeneratorNSF(
+ inter_channels,
+ resblock,
+ resblock_kernel_sizes,
+ resblock_dilation_sizes,
+ upsample_rates,
+ upsample_initial_channel,
+ upsample_kernel_sizes,
+ gin_channels=gin_channels,
+ is_half=kwargs["is_half"],
+ )
+
+ self.flow = ResidualCouplingBlock(
+ inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
+ )
+ self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
+ print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
+
+ def remove_weight_norm(self):
+ self.dec.remove_weight_norm()
+ self.flow.remove_weight_norm()
+ self.enc_q.remove_weight_norm()
+
+ def forward(
+ self, phone, phone_lengths, pitch, pitchf, ds, max_len=None
+ ): # y是spec不需要了现在
+ g = self.emb_g(ds.unsqueeze(0)).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
+ x, x_mask = self.enc_p(phone, pitch, phone_lengths)
+ x = self.flow(x, x_mask, g=g, reverse=True)
+ o = self.dec((x * x_mask)[:, :, :max_len], pitchf, g=g)
+ return o
+
+
+class MultiPeriodDiscriminator(torch.nn.Module):
+ def __init__(self, use_spectral_norm=False):
+ super(MultiPeriodDiscriminator, self).__init__()
+ periods = [2, 3, 5, 7, 11, 17]
+ # periods = [3, 5, 7, 11, 17, 23, 37]
+
+ discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
+ discs = discs + [
+ DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods
+ ]
+ self.discriminators = nn.ModuleList(discs)
+
+ def forward(self, y, y_hat):
+ y_d_rs = [] #
+ y_d_gs = []
+ fmap_rs = []
+ fmap_gs = []
+ for i, d in enumerate(self.discriminators):
+ y_d_r, fmap_r = d(y)
+ y_d_g, fmap_g = d(y_hat)
+ # for j in range(len(fmap_r)):
+ # print(i,j,y.shape,y_hat.shape,fmap_r[j].shape,fmap_g[j].shape)
+ y_d_rs.append(y_d_r)
+ y_d_gs.append(y_d_g)
+ fmap_rs.append(fmap_r)
+ fmap_gs.append(fmap_g)
+
+ return y_d_rs, y_d_gs, fmap_rs, fmap_gs
+
+
+class DiscriminatorS(torch.nn.Module):
+ def __init__(self, use_spectral_norm=False):
+ super(DiscriminatorS, self).__init__()
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
+ self.convs = nn.ModuleList(
+ [
+ norm_f(Conv1d(1, 16, 15, 1, padding=7)),
+ norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
+ norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
+ norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
+ norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
+ norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
+ ]
+ )
+ self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
+
+ def forward(self, x):
+ fmap = []
+
+ for l in self.convs:
+ x = l(x)
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
+ fmap.append(x)
+ x = self.conv_post(x)
+ fmap.append(x)
+ x = torch.flatten(x, 1, -1)
+
+ return x, fmap
+
+
+class DiscriminatorP(torch.nn.Module):
+ def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
+ super(DiscriminatorP, self).__init__()
+ self.period = period
+ self.use_spectral_norm = use_spectral_norm
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
+ self.convs = nn.ModuleList(
+ [
+ norm_f(
+ Conv2d(
+ 1,
+ 32,
+ (kernel_size, 1),
+ (stride, 1),
+ padding=(get_padding(kernel_size, 1), 0),
+ )
+ ),
+ norm_f(
+ Conv2d(
+ 32,
+ 128,
+ (kernel_size, 1),
+ (stride, 1),
+ padding=(get_padding(kernel_size, 1), 0),
+ )
+ ),
+ norm_f(
+ Conv2d(
+ 128,
+ 512,
+ (kernel_size, 1),
+ (stride, 1),
+ padding=(get_padding(kernel_size, 1), 0),
+ )
+ ),
+ norm_f(
+ Conv2d(
+ 512,
+ 1024,
+ (kernel_size, 1),
+ (stride, 1),
+ padding=(get_padding(kernel_size, 1), 0),
+ )
+ ),
+ norm_f(
+ Conv2d(
+ 1024,
+ 1024,
+ (kernel_size, 1),
+ 1,
+ padding=(get_padding(kernel_size, 1), 0),
+ )
+ ),
+ ]
+ )
+ self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
+
+ def forward(self, x):
+ fmap = []
+
+ # 1d to 2d
+ b, c, t = x.shape
+ if t % self.period != 0: # pad first
+ n_pad = self.period - (t % self.period)
+ x = F.pad(x, (0, n_pad), "reflect")
+ t = t + n_pad
+ x = x.view(b, c, t // self.period, self.period)
+
+ for l in self.convs:
+ x = l(x)
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
+ fmap.append(x)
+ x = self.conv_post(x)
+ fmap.append(x)
+ x = torch.flatten(x, 1, -1)
+
+ return x, fmap
diff --git a/infer_pack/modules.py b/infer_pack/modules.py
new file mode 100644
index 0000000000000000000000000000000000000000..960481cedad9a6106f2bf0b9e86e82b120f7b33f
--- /dev/null
+++ b/infer_pack/modules.py
@@ -0,0 +1,522 @@
+import copy
+import math
+import numpy as np
+import scipy
+import torch
+from torch import nn
+from torch.nn import functional as F
+
+from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
+from torch.nn.utils import weight_norm, remove_weight_norm
+
+from infer_pack import commons
+from infer_pack.commons import init_weights, get_padding
+from infer_pack.transforms import piecewise_rational_quadratic_transform
+
+
+LRELU_SLOPE = 0.1
+
+
+class LayerNorm(nn.Module):
+ def __init__(self, channels, eps=1e-5):
+ super().__init__()
+ self.channels = channels
+ self.eps = eps
+
+ self.gamma = nn.Parameter(torch.ones(channels))
+ self.beta = nn.Parameter(torch.zeros(channels))
+
+ def forward(self, x):
+ x = x.transpose(1, -1)
+ x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
+ return x.transpose(1, -1)
+
+
+class ConvReluNorm(nn.Module):
+ def __init__(
+ self,
+ in_channels,
+ hidden_channels,
+ out_channels,
+ kernel_size,
+ n_layers,
+ p_dropout,
+ ):
+ super().__init__()
+ self.in_channels = in_channels
+ self.hidden_channels = hidden_channels
+ self.out_channels = out_channels
+ self.kernel_size = kernel_size
+ self.n_layers = n_layers
+ self.p_dropout = p_dropout
+ assert n_layers > 1, "Number of layers should be larger than 0."
+
+ self.conv_layers = nn.ModuleList()
+ self.norm_layers = nn.ModuleList()
+ self.conv_layers.append(
+ nn.Conv1d(
+ in_channels, hidden_channels, kernel_size, padding=kernel_size // 2
+ )
+ )
+ self.norm_layers.append(LayerNorm(hidden_channels))
+ self.relu_drop = nn.Sequential(nn.ReLU(), nn.Dropout(p_dropout))
+ for _ in range(n_layers - 1):
+ self.conv_layers.append(
+ nn.Conv1d(
+ hidden_channels,
+ hidden_channels,
+ kernel_size,
+ padding=kernel_size // 2,
+ )
+ )
+ self.norm_layers.append(LayerNorm(hidden_channels))
+ self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
+ self.proj.weight.data.zero_()
+ self.proj.bias.data.zero_()
+
+ def forward(self, x, x_mask):
+ x_org = x
+ for i in range(self.n_layers):
+ x = self.conv_layers[i](x * x_mask)
+ x = self.norm_layers[i](x)
+ x = self.relu_drop(x)
+ x = x_org + self.proj(x)
+ return x * x_mask
+
+
+class DDSConv(nn.Module):
+ """
+ Dialted and Depth-Separable Convolution
+ """
+
+ def __init__(self, channels, kernel_size, n_layers, p_dropout=0.0):
+ super().__init__()
+ self.channels = channels
+ self.kernel_size = kernel_size
+ self.n_layers = n_layers
+ self.p_dropout = p_dropout
+
+ self.drop = nn.Dropout(p_dropout)
+ self.convs_sep = nn.ModuleList()
+ self.convs_1x1 = nn.ModuleList()
+ self.norms_1 = nn.ModuleList()
+ self.norms_2 = nn.ModuleList()
+ for i in range(n_layers):
+ dilation = kernel_size**i
+ padding = (kernel_size * dilation - dilation) // 2
+ self.convs_sep.append(
+ nn.Conv1d(
+ channels,
+ channels,
+ kernel_size,
+ groups=channels,
+ dilation=dilation,
+ padding=padding,
+ )
+ )
+ self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
+ self.norms_1.append(LayerNorm(channels))
+ self.norms_2.append(LayerNorm(channels))
+
+ def forward(self, x, x_mask, g=None):
+ if g is not None:
+ x = x + g
+ for i in range(self.n_layers):
+ y = self.convs_sep[i](x * x_mask)
+ y = self.norms_1[i](y)
+ y = F.gelu(y)
+ y = self.convs_1x1[i](y)
+ y = self.norms_2[i](y)
+ y = F.gelu(y)
+ y = self.drop(y)
+ x = x + y
+ return x * x_mask
+
+
+class WN(torch.nn.Module):
+ def __init__(
+ self,
+ hidden_channels,
+ kernel_size,
+ dilation_rate,
+ n_layers,
+ gin_channels=0,
+ p_dropout=0,
+ ):
+ super(WN, self).__init__()
+ assert kernel_size % 2 == 1
+ self.hidden_channels = hidden_channels
+ self.kernel_size = (kernel_size,)
+ self.dilation_rate = dilation_rate
+ self.n_layers = n_layers
+ self.gin_channels = gin_channels
+ self.p_dropout = p_dropout
+
+ self.in_layers = torch.nn.ModuleList()
+ self.res_skip_layers = torch.nn.ModuleList()
+ self.drop = nn.Dropout(p_dropout)
+
+ if gin_channels != 0:
+ cond_layer = torch.nn.Conv1d(
+ gin_channels, 2 * hidden_channels * n_layers, 1
+ )
+ self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name="weight")
+
+ for i in range(n_layers):
+ dilation = dilation_rate**i
+ padding = int((kernel_size * dilation - dilation) / 2)
+ in_layer = torch.nn.Conv1d(
+ hidden_channels,
+ 2 * hidden_channels,
+ kernel_size,
+ dilation=dilation,
+ padding=padding,
+ )
+ in_layer = torch.nn.utils.weight_norm(in_layer, name="weight")
+ self.in_layers.append(in_layer)
+
+ # last one is not necessary
+ if i < n_layers - 1:
+ res_skip_channels = 2 * hidden_channels
+ else:
+ res_skip_channels = hidden_channels
+
+ res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
+ res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name="weight")
+ self.res_skip_layers.append(res_skip_layer)
+
+ def forward(self, x, x_mask, g=None, **kwargs):
+ output = torch.zeros_like(x)
+ n_channels_tensor = torch.IntTensor([self.hidden_channels])
+
+ if g is not None:
+ g = self.cond_layer(g)
+
+ for i in range(self.n_layers):
+ x_in = self.in_layers[i](x)
+ if g is not None:
+ cond_offset = i * 2 * self.hidden_channels
+ g_l = g[:, cond_offset : cond_offset + 2 * self.hidden_channels, :]
+ else:
+ g_l = torch.zeros_like(x_in)
+
+ acts = commons.fused_add_tanh_sigmoid_multiply(x_in, g_l, n_channels_tensor)
+ acts = self.drop(acts)
+
+ res_skip_acts = self.res_skip_layers[i](acts)
+ if i < self.n_layers - 1:
+ res_acts = res_skip_acts[:, : self.hidden_channels, :]
+ x = (x + res_acts) * x_mask
+ output = output + res_skip_acts[:, self.hidden_channels :, :]
+ else:
+ output = output + res_skip_acts
+ return output * x_mask
+
+ def remove_weight_norm(self):
+ if self.gin_channels != 0:
+ torch.nn.utils.remove_weight_norm(self.cond_layer)
+ for l in self.in_layers:
+ torch.nn.utils.remove_weight_norm(l)
+ for l in self.res_skip_layers:
+ torch.nn.utils.remove_weight_norm(l)
+
+
+class ResBlock1(torch.nn.Module):
+ def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
+ super(ResBlock1, self).__init__()
+ self.convs1 = nn.ModuleList(
+ [
+ weight_norm(
+ Conv1d(
+ channels,
+ channels,
+ kernel_size,
+ 1,
+ dilation=dilation[0],
+ padding=get_padding(kernel_size, dilation[0]),
+ )
+ ),
+ weight_norm(
+ Conv1d(
+ channels,
+ channels,
+ kernel_size,
+ 1,
+ dilation=dilation[1],
+ padding=get_padding(kernel_size, dilation[1]),
+ )
+ ),
+ weight_norm(
+ Conv1d(
+ channels,
+ channels,
+ kernel_size,
+ 1,
+ dilation=dilation[2],
+ padding=get_padding(kernel_size, dilation[2]),
+ )
+ ),
+ ]
+ )
+ self.convs1.apply(init_weights)
+
+ self.convs2 = nn.ModuleList(
+ [
+ weight_norm(
+ Conv1d(
+ channels,
+ channels,
+ kernel_size,
+ 1,
+ dilation=1,
+ padding=get_padding(kernel_size, 1),
+ )
+ ),
+ weight_norm(
+ Conv1d(
+ channels,
+ channels,
+ kernel_size,
+ 1,
+ dilation=1,
+ padding=get_padding(kernel_size, 1),
+ )
+ ),
+ weight_norm(
+ Conv1d(
+ channels,
+ channels,
+ kernel_size,
+ 1,
+ dilation=1,
+ padding=get_padding(kernel_size, 1),
+ )
+ ),
+ ]
+ )
+ self.convs2.apply(init_weights)
+
+ def forward(self, x, x_mask=None):
+ for c1, c2 in zip(self.convs1, self.convs2):
+ xt = F.leaky_relu(x, LRELU_SLOPE)
+ if x_mask is not None:
+ xt = xt * x_mask
+ xt = c1(xt)
+ xt = F.leaky_relu(xt, LRELU_SLOPE)
+ if x_mask is not None:
+ xt = xt * x_mask
+ xt = c2(xt)
+ x = xt + x
+ if x_mask is not None:
+ x = x * x_mask
+ return x
+
+ def remove_weight_norm(self):
+ for l in self.convs1:
+ remove_weight_norm(l)
+ for l in self.convs2:
+ remove_weight_norm(l)
+
+
+class ResBlock2(torch.nn.Module):
+ def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
+ super(ResBlock2, self).__init__()
+ self.convs = nn.ModuleList(
+ [
+ weight_norm(
+ Conv1d(
+ channels,
+ channels,
+ kernel_size,
+ 1,
+ dilation=dilation[0],
+ padding=get_padding(kernel_size, dilation[0]),
+ )
+ ),
+ weight_norm(
+ Conv1d(
+ channels,
+ channels,
+ kernel_size,
+ 1,
+ dilation=dilation[1],
+ padding=get_padding(kernel_size, dilation[1]),
+ )
+ ),
+ ]
+ )
+ self.convs.apply(init_weights)
+
+ def forward(self, x, x_mask=None):
+ for c in self.convs:
+ xt = F.leaky_relu(x, LRELU_SLOPE)
+ if x_mask is not None:
+ xt = xt * x_mask
+ xt = c(xt)
+ x = xt + x
+ if x_mask is not None:
+ x = x * x_mask
+ return x
+
+ def remove_weight_norm(self):
+ for l in self.convs:
+ remove_weight_norm(l)
+
+
+class Log(nn.Module):
+ def forward(self, x, x_mask, reverse=False, **kwargs):
+ if not reverse:
+ y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask
+ logdet = torch.sum(-y, [1, 2])
+ return y, logdet
+ else:
+ x = torch.exp(x) * x_mask
+ return x
+
+
+class Flip(nn.Module):
+ def forward(self, x, *args, reverse=False, **kwargs):
+ x = torch.flip(x, [1])
+ if not reverse:
+ logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device)
+ return x, logdet
+ else:
+ return x
+
+
+class ElementwiseAffine(nn.Module):
+ def __init__(self, channels):
+ super().__init__()
+ self.channels = channels
+ self.m = nn.Parameter(torch.zeros(channels, 1))
+ self.logs = nn.Parameter(torch.zeros(channels, 1))
+
+ def forward(self, x, x_mask, reverse=False, **kwargs):
+ if not reverse:
+ y = self.m + torch.exp(self.logs) * x
+ y = y * x_mask
+ logdet = torch.sum(self.logs * x_mask, [1, 2])
+ return y, logdet
+ else:
+ x = (x - self.m) * torch.exp(-self.logs) * x_mask
+ return x
+
+
+class ResidualCouplingLayer(nn.Module):
+ def __init__(
+ self,
+ channels,
+ hidden_channels,
+ kernel_size,
+ dilation_rate,
+ n_layers,
+ p_dropout=0,
+ gin_channels=0,
+ mean_only=False,
+ ):
+ assert channels % 2 == 0, "channels should be divisible by 2"
+ super().__init__()
+ self.channels = channels
+ self.hidden_channels = hidden_channels
+ self.kernel_size = kernel_size
+ self.dilation_rate = dilation_rate
+ self.n_layers = n_layers
+ self.half_channels = channels // 2
+ self.mean_only = mean_only
+
+ self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
+ self.enc = WN(
+ hidden_channels,
+ kernel_size,
+ dilation_rate,
+ n_layers,
+ p_dropout=p_dropout,
+ gin_channels=gin_channels,
+ )
+ self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
+ self.post.weight.data.zero_()
+ self.post.bias.data.zero_()
+
+ def forward(self, x, x_mask, g=None, reverse=False):
+ x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
+ h = self.pre(x0) * x_mask
+ h = self.enc(h, x_mask, g=g)
+ stats = self.post(h) * x_mask
+ if not self.mean_only:
+ m, logs = torch.split(stats, [self.half_channels] * 2, 1)
+ else:
+ m = stats
+ logs = torch.zeros_like(m)
+
+ if not reverse:
+ x1 = m + x1 * torch.exp(logs) * x_mask
+ x = torch.cat([x0, x1], 1)
+ logdet = torch.sum(logs, [1, 2])
+ return x, logdet
+ else:
+ x1 = (x1 - m) * torch.exp(-logs) * x_mask
+ x = torch.cat([x0, x1], 1)
+ return x
+
+ def remove_weight_norm(self):
+ self.enc.remove_weight_norm()
+
+
+class ConvFlow(nn.Module):
+ def __init__(
+ self,
+ in_channels,
+ filter_channels,
+ kernel_size,
+ n_layers,
+ num_bins=10,
+ tail_bound=5.0,
+ ):
+ super().__init__()
+ self.in_channels = in_channels
+ self.filter_channels = filter_channels
+ self.kernel_size = kernel_size
+ self.n_layers = n_layers
+ self.num_bins = num_bins
+ self.tail_bound = tail_bound
+ self.half_channels = in_channels // 2
+
+ self.pre = nn.Conv1d(self.half_channels, filter_channels, 1)
+ self.convs = DDSConv(filter_channels, kernel_size, n_layers, p_dropout=0.0)
+ self.proj = nn.Conv1d(
+ filter_channels, self.half_channels * (num_bins * 3 - 1), 1
+ )
+ self.proj.weight.data.zero_()
+ self.proj.bias.data.zero_()
+
+ def forward(self, x, x_mask, g=None, reverse=False):
+ x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
+ h = self.pre(x0)
+ h = self.convs(h, x_mask, g=g)
+ h = self.proj(h) * x_mask
+
+ b, c, t = x0.shape
+ h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) # [b, cx?, t] -> [b, c, t, ?]
+
+ unnormalized_widths = h[..., : self.num_bins] / math.sqrt(self.filter_channels)
+ unnormalized_heights = h[..., self.num_bins : 2 * self.num_bins] / math.sqrt(
+ self.filter_channels
+ )
+ unnormalized_derivatives = h[..., 2 * self.num_bins :]
+
+ x1, logabsdet = piecewise_rational_quadratic_transform(
+ x1,
+ unnormalized_widths,
+ unnormalized_heights,
+ unnormalized_derivatives,
+ inverse=reverse,
+ tails="linear",
+ tail_bound=self.tail_bound,
+ )
+
+ x = torch.cat([x0, x1], 1) * x_mask
+ logdet = torch.sum(logabsdet * x_mask, [1, 2])
+ if not reverse:
+ return x, logdet
+ else:
+ return x
diff --git a/infer_pack/transforms.py b/infer_pack/transforms.py
new file mode 100644
index 0000000000000000000000000000000000000000..a11f799e023864ff7082c1f49c0cc18351a13b47
--- /dev/null
+++ b/infer_pack/transforms.py
@@ -0,0 +1,209 @@
+import torch
+from torch.nn import functional as F
+
+import numpy as np
+
+
+DEFAULT_MIN_BIN_WIDTH = 1e-3
+DEFAULT_MIN_BIN_HEIGHT = 1e-3
+DEFAULT_MIN_DERIVATIVE = 1e-3
+
+
+def piecewise_rational_quadratic_transform(
+ inputs,
+ unnormalized_widths,
+ unnormalized_heights,
+ unnormalized_derivatives,
+ inverse=False,
+ tails=None,
+ tail_bound=1.0,
+ min_bin_width=DEFAULT_MIN_BIN_WIDTH,
+ min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
+ min_derivative=DEFAULT_MIN_DERIVATIVE,
+):
+ if tails is None:
+ spline_fn = rational_quadratic_spline
+ spline_kwargs = {}
+ else:
+ spline_fn = unconstrained_rational_quadratic_spline
+ spline_kwargs = {"tails": tails, "tail_bound": tail_bound}
+
+ outputs, logabsdet = spline_fn(
+ inputs=inputs,
+ unnormalized_widths=unnormalized_widths,
+ unnormalized_heights=unnormalized_heights,
+ unnormalized_derivatives=unnormalized_derivatives,
+ inverse=inverse,
+ min_bin_width=min_bin_width,
+ min_bin_height=min_bin_height,
+ min_derivative=min_derivative,
+ **spline_kwargs
+ )
+ return outputs, logabsdet
+
+
+def searchsorted(bin_locations, inputs, eps=1e-6):
+ bin_locations[..., -1] += eps
+ return torch.sum(inputs[..., None] >= bin_locations, dim=-1) - 1
+
+
+def unconstrained_rational_quadratic_spline(
+ inputs,
+ unnormalized_widths,
+ unnormalized_heights,
+ unnormalized_derivatives,
+ inverse=False,
+ tails="linear",
+ tail_bound=1.0,
+ min_bin_width=DEFAULT_MIN_BIN_WIDTH,
+ min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
+ min_derivative=DEFAULT_MIN_DERIVATIVE,
+):
+ inside_interval_mask = (inputs >= -tail_bound) & (inputs <= tail_bound)
+ outside_interval_mask = ~inside_interval_mask
+
+ outputs = torch.zeros_like(inputs)
+ logabsdet = torch.zeros_like(inputs)
+
+ if tails == "linear":
+ unnormalized_derivatives = F.pad(unnormalized_derivatives, pad=(1, 1))
+ constant = np.log(np.exp(1 - min_derivative) - 1)
+ unnormalized_derivatives[..., 0] = constant
+ unnormalized_derivatives[..., -1] = constant
+
+ outputs[outside_interval_mask] = inputs[outside_interval_mask]
+ logabsdet[outside_interval_mask] = 0
+ else:
+ raise RuntimeError("{} tails are not implemented.".format(tails))
+
+ (
+ outputs[inside_interval_mask],
+ logabsdet[inside_interval_mask],
+ ) = rational_quadratic_spline(
+ inputs=inputs[inside_interval_mask],
+ unnormalized_widths=unnormalized_widths[inside_interval_mask, :],
+ unnormalized_heights=unnormalized_heights[inside_interval_mask, :],
+ unnormalized_derivatives=unnormalized_derivatives[inside_interval_mask, :],
+ inverse=inverse,
+ left=-tail_bound,
+ right=tail_bound,
+ bottom=-tail_bound,
+ top=tail_bound,
+ min_bin_width=min_bin_width,
+ min_bin_height=min_bin_height,
+ min_derivative=min_derivative,
+ )
+
+ return outputs, logabsdet
+
+
+def rational_quadratic_spline(
+ inputs,
+ unnormalized_widths,
+ unnormalized_heights,
+ unnormalized_derivatives,
+ inverse=False,
+ left=0.0,
+ right=1.0,
+ bottom=0.0,
+ top=1.0,
+ min_bin_width=DEFAULT_MIN_BIN_WIDTH,
+ min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
+ min_derivative=DEFAULT_MIN_DERIVATIVE,
+):
+ if torch.min(inputs) < left or torch.max(inputs) > right:
+ raise ValueError("Input to a transform is not within its domain")
+
+ num_bins = unnormalized_widths.shape[-1]
+
+ if min_bin_width * num_bins > 1.0:
+ raise ValueError("Minimal bin width too large for the number of bins")
+ if min_bin_height * num_bins > 1.0:
+ raise ValueError("Minimal bin height too large for the number of bins")
+
+ widths = F.softmax(unnormalized_widths, dim=-1)
+ widths = min_bin_width + (1 - min_bin_width * num_bins) * widths
+ cumwidths = torch.cumsum(widths, dim=-1)
+ cumwidths = F.pad(cumwidths, pad=(1, 0), mode="constant", value=0.0)
+ cumwidths = (right - left) * cumwidths + left
+ cumwidths[..., 0] = left
+ cumwidths[..., -1] = right
+ widths = cumwidths[..., 1:] - cumwidths[..., :-1]
+
+ derivatives = min_derivative + F.softplus(unnormalized_derivatives)
+
+ heights = F.softmax(unnormalized_heights, dim=-1)
+ heights = min_bin_height + (1 - min_bin_height * num_bins) * heights
+ cumheights = torch.cumsum(heights, dim=-1)
+ cumheights = F.pad(cumheights, pad=(1, 0), mode="constant", value=0.0)
+ cumheights = (top - bottom) * cumheights + bottom
+ cumheights[..., 0] = bottom
+ cumheights[..., -1] = top
+ heights = cumheights[..., 1:] - cumheights[..., :-1]
+
+ if inverse:
+ bin_idx = searchsorted(cumheights, inputs)[..., None]
+ else:
+ bin_idx = searchsorted(cumwidths, inputs)[..., None]
+
+ input_cumwidths = cumwidths.gather(-1, bin_idx)[..., 0]
+ input_bin_widths = widths.gather(-1, bin_idx)[..., 0]
+
+ input_cumheights = cumheights.gather(-1, bin_idx)[..., 0]
+ delta = heights / widths
+ input_delta = delta.gather(-1, bin_idx)[..., 0]
+
+ input_derivatives = derivatives.gather(-1, bin_idx)[..., 0]
+ input_derivatives_plus_one = derivatives[..., 1:].gather(-1, bin_idx)[..., 0]
+
+ input_heights = heights.gather(-1, bin_idx)[..., 0]
+
+ if inverse:
+ a = (inputs - input_cumheights) * (
+ input_derivatives + input_derivatives_plus_one - 2 * input_delta
+ ) + input_heights * (input_delta - input_derivatives)
+ b = input_heights * input_derivatives - (inputs - input_cumheights) * (
+ input_derivatives + input_derivatives_plus_one - 2 * input_delta
+ )
+ c = -input_delta * (inputs - input_cumheights)
+
+ discriminant = b.pow(2) - 4 * a * c
+ assert (discriminant >= 0).all()
+
+ root = (2 * c) / (-b - torch.sqrt(discriminant))
+ outputs = root * input_bin_widths + input_cumwidths
+
+ theta_one_minus_theta = root * (1 - root)
+ denominator = input_delta + (
+ (input_derivatives + input_derivatives_plus_one - 2 * input_delta)
+ * theta_one_minus_theta
+ )
+ derivative_numerator = input_delta.pow(2) * (
+ input_derivatives_plus_one * root.pow(2)
+ + 2 * input_delta * theta_one_minus_theta
+ + input_derivatives * (1 - root).pow(2)
+ )
+ logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
+
+ return outputs, -logabsdet
+ else:
+ theta = (inputs - input_cumwidths) / input_bin_widths
+ theta_one_minus_theta = theta * (1 - theta)
+
+ numerator = input_heights * (
+ input_delta * theta.pow(2) + input_derivatives * theta_one_minus_theta
+ )
+ denominator = input_delta + (
+ (input_derivatives + input_derivatives_plus_one - 2 * input_delta)
+ * theta_one_minus_theta
+ )
+ outputs = input_cumheights + numerator / denominator
+
+ derivative_numerator = input_delta.pow(2) * (
+ input_derivatives_plus_one * theta.pow(2)
+ + 2 * input_delta * theta_one_minus_theta
+ + input_derivatives * (1 - theta).pow(2)
+ )
+ logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
+
+ return outputs, logabsdet
diff --git a/requirements-full.txt b/requirements-full.txt
new file mode 100644
index 0000000000000000000000000000000000000000..d6c0fc8db1d0c08050a75ba2d90a14ebe86b21e4
--- /dev/null
+++ b/requirements-full.txt
@@ -0,0 +1,49 @@
+numba==0.56.4
+numpy==1.23.5
+scipy==1.9.3
+librosa==0.9.2
+llvmlite==0.39.0
+fairseq==0.12.2
+faiss-cpu==1.7.0; sys_platform == "darwin"
+faiss-cpu==1.7.2; sys_platform != "darwin"
+gradio
+Cython
+future>=0.18.3
+pydub>=0.25.1
+soundfile>=0.12.1
+ffmpeg-python>=0.2.0
+tensorboardX
+functorch>=2.0.0
+Jinja2>=3.1.2
+json5>=0.9.11
+Markdown
+matplotlib>=3.7.1
+matplotlib-inline>=0.1.6
+praat-parselmouth>=0.4.3
+Pillow>=9.1.1
+pyworld>=0.3.2
+resampy>=0.4.2
+scikit-learn>=1.2.2
+starlette>=0.26.1
+tensorboard
+tensorboard-data-server
+tensorboard-plugin-wit
+torchgen>=0.0.1
+tqdm>=4.65.0
+tornado>=6.2
+Werkzeug>=2.2.3
+uc-micro-py>=1.0.1
+sympy>=1.11.1
+tabulate>=0.9.0
+PyYAML>=6.0
+pyasn1>=0.4.8
+pyasn1-modules>=0.2.8
+fsspec>=2023.3.0
+absl-py>=1.4.0
+audioread
+uvicorn>=0.21.1
+colorama>=0.4.6
+edge-tts
+demucs
+yt_dlp
+ffmpeg
\ No newline at end of file
diff --git a/requirements.txt b/requirements.txt
new file mode 100644
index 0000000000000000000000000000000000000000..8cf101a14ba894919ff8a7fa427fe299df195934
--- /dev/null
+++ b/requirements.txt
@@ -0,0 +1,46 @@
+numba==0.56.4
+numpy==1.23.5
+scipy==1.9.3
+librosa==0.9.2
+llvmlite==0.39.0
+fairseq==0.12.2
+faiss-cpu==1.7.0; sys_platform == "darwin"
+faiss-cpu==1.7.2; sys_platform != "darwin"
+gradio
+Cython
+future>=0.18.3
+pydub>=0.25.1
+soundfile>=0.12.1
+ffmpeg-python>=0.2.0
+tensorboardX
+functorch>=2.0.0
+Jinja2>=3.1.2
+json5>=0.9.11
+Markdown
+matplotlib>=3.7.1
+matplotlib-inline>=0.1.6
+praat-parselmouth>=0.4.3
+Pillow>=9.1.1
+pyworld>=0.3.2
+resampy>=0.4.2
+scikit-learn>=1.2.2
+starlette>=0.26.1
+tensorboard
+tensorboard-data-server
+tensorboard-plugin-wit
+torchgen>=0.0.1
+tqdm>=4.65.0
+tornado>=6.2
+Werkzeug>=2.2.3
+uc-micro-py>=1.0.1
+sympy>=1.11.1
+tabulate>=0.9.0
+PyYAML>=6.0
+pyasn1>=0.4.8
+pyasn1-modules>=0.2.8
+fsspec>=2023.3.0
+absl-py>=1.4.0
+audioread
+uvicorn>=0.21.1
+colorama>=0.4.6
+edge-tts
diff --git a/vc_infer_pipeline.py b/vc_infer_pipeline.py
new file mode 100644
index 0000000000000000000000000000000000000000..7ff98b2c812f4e74afe92048fb26009fb008479d
--- /dev/null
+++ b/vc_infer_pipeline.py
@@ -0,0 +1,320 @@
+import numpy as np, parselmouth, torch, pdb
+from time import time as ttime
+import torch.nn.functional as F
+import scipy.signal as signal
+import pyworld, os, traceback, faiss
+from scipy import signal
+
+bh, ah = signal.butter(N=5, Wn=48, btype="high", fs=16000)
+
+
+class VC(object):
+ def __init__(self, tgt_sr, config):
+ self.x_pad, self.x_query, self.x_center, self.x_max, self.is_half = (
+ config.x_pad,
+ config.x_query,
+ config.x_center,
+ config.x_max,
+ config.is_half,
+ )
+ self.sr = 16000 # hubert输入采样率
+ self.window = 160 # 每帧点数
+ self.t_pad = self.sr * self.x_pad # 每条前后pad时间
+ self.t_pad_tgt = tgt_sr * self.x_pad
+ self.t_pad2 = self.t_pad * 2
+ self.t_query = self.sr * self.x_query # 查询切点前后查询时间
+ self.t_center = self.sr * self.x_center # 查询切点位置
+ self.t_max = self.sr * self.x_max # 免查询时长阈值
+ self.device = config.device
+
+ def get_f0(self, x, p_len, f0_up_key, f0_method, inp_f0=None):
+ time_step = self.window / self.sr * 1000
+ f0_min = 50
+ f0_max = 1100
+ f0_mel_min = 1127 * np.log(1 + f0_min / 700)
+ f0_mel_max = 1127 * np.log(1 + f0_max / 700)
+ if f0_method == "pm":
+ f0 = (
+ parselmouth.Sound(x, self.sr)
+ .to_pitch_ac(
+ time_step=time_step / 1000,
+ voicing_threshold=0.6,
+ pitch_floor=f0_min,
+ pitch_ceiling=f0_max,
+ )
+ .selected_array["frequency"]
+ )
+ pad_size = (p_len - len(f0) + 1) // 2
+ if pad_size > 0 or p_len - len(f0) - pad_size > 0:
+ f0 = np.pad(
+ f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant"
+ )
+ elif f0_method == "harvest":
+ f0, t = pyworld.harvest(
+ x.astype(np.double),
+ fs=self.sr,
+ f0_ceil=f0_max,
+ f0_floor=f0_min,
+ frame_period=10,
+ )
+ f0 = pyworld.stonemask(x.astype(np.double), f0, t, self.sr)
+ f0 = signal.medfilt(f0, 3)
+ f0 *= pow(2, f0_up_key / 12)
+ # with open("test.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
+ tf0 = self.sr // self.window # 每秒f0点数
+ if inp_f0 is not None:
+ delta_t = np.round(
+ (inp_f0[:, 0].max() - inp_f0[:, 0].min()) * tf0 + 1
+ ).astype("int16")
+ replace_f0 = np.interp(
+ list(range(delta_t)), inp_f0[:, 0] * 100, inp_f0[:, 1]
+ )
+ shape = f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)].shape[0]
+ f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)] = replace_f0[
+ :shape
+ ]
+ # with open("test_opt.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
+ f0bak = f0.copy()
+ f0_mel = 1127 * np.log(1 + f0 / 700)
+ f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (
+ f0_mel_max - f0_mel_min
+ ) + 1
+ f0_mel[f0_mel <= 1] = 1
+ f0_mel[f0_mel > 255] = 255
+ f0_coarse = np.rint(f0_mel).astype(np.int)
+ return f0_coarse, f0bak # 1-0
+
+ def vc(
+ self,
+ model,
+ net_g,
+ sid,
+ audio0,
+ pitch,
+ pitchf,
+ times,
+ index,
+ big_npy,
+ index_rate,
+ ): # ,file_index,file_big_npy
+ feats = torch.from_numpy(audio0)
+ if self.is_half:
+ feats = feats.half()
+ else:
+ feats = feats.float()
+ if feats.dim() == 2: # double channels
+ feats = feats.mean(-1)
+ assert feats.dim() == 1, feats.dim()
+ feats = feats.view(1, -1)
+ padding_mask = torch.BoolTensor(feats.shape).to(self.device).fill_(False)
+
+ inputs = {
+ "source": feats.to(self.device),
+ "padding_mask": padding_mask,
+ "output_layer": 9, # layer 9
+ }
+ t0 = ttime()
+ with torch.no_grad():
+ logits = model.extract_features(**inputs)
+ feats = model.final_proj(logits[0])
+
+ if (
+ isinstance(index, type(None)) == False
+ and isinstance(big_npy, type(None)) == False
+ and index_rate != 0
+ ):
+ npy = feats[0].cpu().numpy()
+ if self.is_half:
+ npy = npy.astype("float32")
+
+ # _, I = index.search(npy, 1)
+ # npy = big_npy[I.squeeze()]
+
+ score, ix = index.search(npy, k=8)
+ weight = np.square(1 / score)
+ weight /= weight.sum(axis=1, keepdims=True)
+ npy = np.sum(big_npy[ix] * np.expand_dims(weight, axis=2), axis=1)
+
+ if self.is_half:
+ npy = npy.astype("float16")
+ feats = (
+ torch.from_numpy(npy).unsqueeze(0).to(self.device) * index_rate
+ + (1 - index_rate) * feats
+ )
+
+ feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
+ t1 = ttime()
+ p_len = audio0.shape[0] // self.window
+ if feats.shape[1] < p_len:
+ p_len = feats.shape[1]
+ if pitch != None and pitchf != None:
+ pitch = pitch[:, :p_len]
+ pitchf = pitchf[:, :p_len]
+ p_len = torch.tensor([p_len], device=self.device).long()
+ with torch.no_grad():
+ if pitch != None and pitchf != None:
+ audio1 = (
+ (net_g.infer(feats, p_len, pitch, pitchf, sid)[0][0, 0] * 32768)
+ .data.cpu()
+ .float()
+ .numpy()
+ .astype(np.int16)
+ )
+ else:
+ audio1 = (
+ (net_g.infer(feats, p_len, sid)[0][0, 0] * 32768)
+ .data.cpu()
+ .float()
+ .numpy()
+ .astype(np.int16)
+ )
+ del feats, p_len, padding_mask
+ if torch.cuda.is_available():
+ torch.cuda.empty_cache()
+ t2 = ttime()
+ times[0] += t1 - t0
+ times[2] += t2 - t1
+ return audio1
+
+ def pipeline(
+ self,
+ model,
+ net_g,
+ sid,
+ audio,
+ times,
+ f0_up_key,
+ f0_method,
+ file_index,
+ # file_big_npy,
+ index_rate,
+ if_f0,
+ f0_file=None,
+ ):
+ if (
+ file_index != ""
+ # and file_big_npy != ""
+ # and os.path.exists(file_big_npy) == True
+ and os.path.exists(file_index) == True
+ and index_rate != 0
+ ):
+ try:
+ index = faiss.read_index(file_index)
+ # big_npy = np.load(file_big_npy)
+ big_npy = index.reconstruct_n(0, index.ntotal)
+ except:
+ traceback.print_exc()
+ index = big_npy = None
+ else:
+ index = big_npy = None
+ audio = signal.filtfilt(bh, ah, audio)
+ audio_pad = np.pad(audio, (self.window // 2, self.window // 2), mode="reflect")
+ opt_ts = []
+ if audio_pad.shape[0] > self.t_max:
+ audio_sum = np.zeros_like(audio)
+ for i in range(self.window):
+ audio_sum += audio_pad[i : i - self.window]
+ for t in range(self.t_center, audio.shape[0], self.t_center):
+ opt_ts.append(
+ t
+ - self.t_query
+ + np.where(
+ np.abs(audio_sum[t - self.t_query : t + self.t_query])
+ == np.abs(audio_sum[t - self.t_query : t + self.t_query]).min()
+ )[0][0]
+ )
+ s = 0
+ audio_opt = []
+ t = None
+ t1 = ttime()
+ audio_pad = np.pad(audio, (self.t_pad, self.t_pad), mode="reflect")
+ p_len = audio_pad.shape[0] // self.window
+ inp_f0 = None
+ if hasattr(f0_file, "name") == True:
+ try:
+ with open(f0_file.name, "r") as f:
+ lines = f.read().strip("\n").split("\n")
+ inp_f0 = []
+ for line in lines:
+ inp_f0.append([float(i) for i in line.split(",")])
+ inp_f0 = np.array(inp_f0, dtype="float32")
+ except:
+ traceback.print_exc()
+ sid = torch.tensor(sid, device=self.device).unsqueeze(0).long()
+ pitch, pitchf = None, None
+ if if_f0 == 1:
+ pitch, pitchf = self.get_f0(audio_pad, p_len, f0_up_key, f0_method, inp_f0)
+ pitch = pitch[:p_len]
+ pitchf = pitchf[:p_len]
+ pitch = torch.tensor(pitch, device=self.device).unsqueeze(0).long()
+ pitchf = torch.tensor(pitchf, device=self.device).unsqueeze(0).float()
+ t2 = ttime()
+ times[1] += t2 - t1
+ for t in opt_ts:
+ t = t // self.window * self.window
+ if if_f0 == 1:
+ audio_opt.append(
+ self.vc(
+ model,
+ net_g,
+ sid,
+ audio_pad[s : t + self.t_pad2 + self.window],
+ pitch[:, s // self.window : (t + self.t_pad2) // self.window],
+ pitchf[:, s // self.window : (t + self.t_pad2) // self.window],
+ times,
+ index,
+ big_npy,
+ index_rate,
+ )[self.t_pad_tgt : -self.t_pad_tgt]
+ )
+ else:
+ audio_opt.append(
+ self.vc(
+ model,
+ net_g,
+ sid,
+ audio_pad[s : t + self.t_pad2 + self.window],
+ None,
+ None,
+ times,
+ index,
+ big_npy,
+ index_rate,
+ )[self.t_pad_tgt : -self.t_pad_tgt]
+ )
+ s = t
+ if if_f0 == 1:
+ audio_opt.append(
+ self.vc(
+ model,
+ net_g,
+ sid,
+ audio_pad[t:],
+ pitch[:, t // self.window :] if t is not None else pitch,
+ pitchf[:, t // self.window :] if t is not None else pitchf,
+ times,
+ index,
+ big_npy,
+ index_rate,
+ )[self.t_pad_tgt : -self.t_pad_tgt]
+ )
+ else:
+ audio_opt.append(
+ self.vc(
+ model,
+ net_g,
+ sid,
+ audio_pad[t:],
+ None,
+ None,
+ times,
+ index,
+ big_npy,
+ index_rate,
+ )[self.t_pad_tgt : -self.t_pad_tgt]
+ )
+ audio_opt = np.concatenate(audio_opt)
+ del pitch, pitchf, sid
+ if torch.cuda.is_available():
+ torch.cuda.empty_cache()
+ return audio_opt
diff --git a/weights/folder_info.json b/weights/folder_info.json
new file mode 100644
index 0000000000000000000000000000000000000000..e7bcf14e3d3e28011151d2ba8c0b506ee5101bd7
--- /dev/null
+++ b/weights/folder_info.json
@@ -0,0 +1,8 @@
+{
+ "genshin-impact":{
+ "enable": true,
+ "title": "Genshin Impact",
+ "folder_path": "genshin-impact",
+ "description": "Models from [RVC Genshin Impact](https://huggingface.co/ArkanDash/rvc-genshin-impact)"
+ }
+}
\ No newline at end of file
diff --git a/weights/genshin-impact/ayaka-jp/added_IVF2202_Flat_nprobe_1.index b/weights/genshin-impact/ayaka-jp/added_IVF2202_Flat_nprobe_1.index
new file mode 100644
index 0000000000000000000000000000000000000000..c515a28f4e7e34a931f21f52a0ac40f8c8815802
--- /dev/null
+++ b/weights/genshin-impact/ayaka-jp/added_IVF2202_Flat_nprobe_1.index
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:f170516ebb7fe83190108580d0f5990cfb141006dcaeb92a3171f21dc05bbca3
+size 90916243
diff --git a/weights/genshin-impact/ayaka-jp/ayaka-jp.pth b/weights/genshin-impact/ayaka-jp/ayaka-jp.pth
new file mode 100644
index 0000000000000000000000000000000000000000..6b2ba956ef08a7ac9f1104cd6fd08848068c7bca
--- /dev/null
+++ b/weights/genshin-impact/ayaka-jp/ayaka-jp.pth
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:7e2aa027c86b22f9e5c9d5b42e990edfa11e8f2467adb9064486fb35839072b6
+size 55027130
diff --git a/weights/genshin-impact/ayaka-jp/cover.png b/weights/genshin-impact/ayaka-jp/cover.png
new file mode 100644
index 0000000000000000000000000000000000000000..1957719e47c3bccb164a2d6e0a83756e040bea18
--- /dev/null
+++ b/weights/genshin-impact/ayaka-jp/cover.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:81c9792db58c9ca86c1c2f0ec059c9bd10b9af1ec2faf6ead048ab56887950b2
+size 1269659
diff --git a/weights/genshin-impact/ayato-jp/added_IVF1304_Flat_nprobe_1.index b/weights/genshin-impact/ayato-jp/added_IVF1304_Flat_nprobe_1.index
new file mode 100644
index 0000000000000000000000000000000000000000..dcf5f16795bba5f568f9e7dd12e9d7dc9acbc5a4
--- /dev/null
+++ b/weights/genshin-impact/ayato-jp/added_IVF1304_Flat_nprobe_1.index
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:4fd600f40f3d8ef0c490eb66d73f25f89056d982edd4f467bda6b699d13e1fca
+size 53868475
diff --git a/weights/genshin-impact/ayato-jp/ayato-jp.pth b/weights/genshin-impact/ayato-jp/ayato-jp.pth
new file mode 100644
index 0000000000000000000000000000000000000000..1d15e9ca1dec7f1d50723e97718540604948ba31
--- /dev/null
+++ b/weights/genshin-impact/ayato-jp/ayato-jp.pth
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:f6139fd4482942ab0075f08d5960d8b9b576945e6204ef2965dd3bb96ccccca4
+size 55027130
diff --git a/weights/genshin-impact/ayato-jp/cover.png b/weights/genshin-impact/ayato-jp/cover.png
new file mode 100644
index 0000000000000000000000000000000000000000..218d119f8371168aa8a8edd18c2efe4910ae0bf3
--- /dev/null
+++ b/weights/genshin-impact/ayato-jp/cover.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:77a250dad75461af6cd593e2ce8a03d9bb12e664e36b7327fcaab6151ccbf93c
+size 2986782
diff --git a/weights/genshin-impact/diluc-jp/added_IVF1511_Flat_nprobe_1.index b/weights/genshin-impact/diluc-jp/added_IVF1511_Flat_nprobe_1.index
new file mode 100644
index 0000000000000000000000000000000000000000..6ef4c99954f74d0b86064d66071c4af0ba02d9b5
--- /dev/null
+++ b/weights/genshin-impact/diluc-jp/added_IVF1511_Flat_nprobe_1.index
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:2e2a2500a55fb9c888f75af94f7fef54e2efbb453e8294f9bcda4f84ae4ca5dd
+size 62405179
diff --git a/weights/genshin-impact/diluc-jp/cover.png b/weights/genshin-impact/diluc-jp/cover.png
new file mode 100644
index 0000000000000000000000000000000000000000..91f909d5b187d796edb9c4053af84af6c3fc5cd9
--- /dev/null
+++ b/weights/genshin-impact/diluc-jp/cover.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:bff8978711329395eedc7b4d3b8aeaea043d4dbea6c7c2f4668132b8abfe5adf
+size 1229695
diff --git a/weights/genshin-impact/diluc-jp/diluc-jp.pth b/weights/genshin-impact/diluc-jp/diluc-jp.pth
new file mode 100644
index 0000000000000000000000000000000000000000..a4c9144d3a667d8ccb1354b5122e47acccd93d5b
--- /dev/null
+++ b/weights/genshin-impact/diluc-jp/diluc-jp.pth
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:e8d2324a1c31d9e5516c807e0ab5c560fb5bf080be74f8a3849809b126d4b1dc
+size 55027130
diff --git a/weights/genshin-impact/eula-jp/added_IVF2219_Flat_nprobe_1.index b/weights/genshin-impact/eula-jp/added_IVF2219_Flat_nprobe_1.index
new file mode 100644
index 0000000000000000000000000000000000000000..c3485f75dc13800484f6fb28fd777dcc35f64827
--- /dev/null
+++ b/weights/genshin-impact/eula-jp/added_IVF2219_Flat_nprobe_1.index
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:b315239e25bc0e71239d5b825618a2d7c16af9a87d36a1f84a2a5c31e48be861
+size 91614907
diff --git a/weights/genshin-impact/eula-jp/cover.png b/weights/genshin-impact/eula-jp/cover.png
new file mode 100644
index 0000000000000000000000000000000000000000..9845fd5be1494c0fec008afdf50438075fe863f4
--- /dev/null
+++ b/weights/genshin-impact/eula-jp/cover.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:4e865a7dfd1b35c6851b8707a7a7cfcdff10802c6ee645179e467b02fda83fb9
+size 2659755
diff --git a/weights/genshin-impact/eula-jp/eula-jp.pth b/weights/genshin-impact/eula-jp/eula-jp.pth
new file mode 100644
index 0000000000000000000000000000000000000000..6ff9bd077625f0399675e3b0a4322bc45df64073
--- /dev/null
+++ b/weights/genshin-impact/eula-jp/eula-jp.pth
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:b806e046ee5485ea42522b7f1df79e64e7bec7a248cf8dda21a85a86cfd88054
+size 55026095
diff --git a/weights/genshin-impact/fischl-jp/added_IVF1225_Flat_nprobe_1.index b/weights/genshin-impact/fischl-jp/added_IVF1225_Flat_nprobe_1.index
new file mode 100644
index 0000000000000000000000000000000000000000..12914076f7d483bdae076b4cb28916d52bbae742
--- /dev/null
+++ b/weights/genshin-impact/fischl-jp/added_IVF1225_Flat_nprobe_1.index
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:0cb77f4db13ba45f4d48f711ad3c9e13159b9e8ff7b5e8ff0ac705ad0ed3bad4
+size 50599099
diff --git a/weights/genshin-impact/fischl-jp/cover.png b/weights/genshin-impact/fischl-jp/cover.png
new file mode 100644
index 0000000000000000000000000000000000000000..bb0aed47dc699092a903f86ac2ebdcdb03d58d8f
--- /dev/null
+++ b/weights/genshin-impact/fischl-jp/cover.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:d23421cb6899171aa821a3a060aa0f1feef4d293e06a2fa3f2398849ed8efa0b
+size 1500742
diff --git a/weights/genshin-impact/fischl-jp/fischl-jp.pth b/weights/genshin-impact/fischl-jp/fischl-jp.pth
new file mode 100644
index 0000000000000000000000000000000000000000..0a07b61434dc0bf92ccfd5b51c2dad7bffb053b7
--- /dev/null
+++ b/weights/genshin-impact/fischl-jp/fischl-jp.pth
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:28c04e4cd0ddb1abc8a3d0ad0b7aea94fba37b9ef5903e2f4e8c2e62015844f5
+size 55027589
diff --git a/weights/genshin-impact/ganyu-jp/added_IVF1636_Flat_nprobe_1.index b/weights/genshin-impact/ganyu-jp/added_IVF1636_Flat_nprobe_1.index
new file mode 100644
index 0000000000000000000000000000000000000000..8a1e5da0adc6ef4a8a295a5f505e3a9db51af309
--- /dev/null
+++ b/weights/genshin-impact/ganyu-jp/added_IVF1636_Flat_nprobe_1.index
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:bee4d6ad7b7f8f0739b3f3f27639b8da7f9ad6fa216e10e98cf933505fe745c5
+size 67551763
diff --git a/weights/genshin-impact/ganyu-jp/cover.png b/weights/genshin-impact/ganyu-jp/cover.png
new file mode 100644
index 0000000000000000000000000000000000000000..d70cfaa9a44cb282fbf5ba83ea3bd9b5319e072c
--- /dev/null
+++ b/weights/genshin-impact/ganyu-jp/cover.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:c80181168d0281895d108bd2086d6fba719f88f6849a9dd701c61bb130feb79b
+size 1045057
diff --git a/weights/genshin-impact/ganyu-jp/ganyu-jp.pth b/weights/genshin-impact/ganyu-jp/ganyu-jp.pth
new file mode 100644
index 0000000000000000000000000000000000000000..d7a0de68257a6fc8f8af5c48ed9638d530cb78e0
--- /dev/null
+++ b/weights/genshin-impact/ganyu-jp/ganyu-jp.pth
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:70e71be2ae8ce8929a3a1e95dfa7f6a5c15d7c8a0854ea2bdaf36cf5aaf266b5
+size 55027130
diff --git a/weights/genshin-impact/hutao-jp/added_IVF1662_Flat_nprobe_1.index b/weights/genshin-impact/hutao-jp/added_IVF1662_Flat_nprobe_1.index
new file mode 100644
index 0000000000000000000000000000000000000000..f2b1323fbc64291421ca21f9bfe20c0be609420b
--- /dev/null
+++ b/weights/genshin-impact/hutao-jp/added_IVF1662_Flat_nprobe_1.index
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:bd05a09ce5340a59c9487a650cc17d1e52ab8c64e6ec90a34b027c5fa995b432
+size 68629171
diff --git a/weights/genshin-impact/hutao-jp/cover.png b/weights/genshin-impact/hutao-jp/cover.png
new file mode 100644
index 0000000000000000000000000000000000000000..4410b77b250c5feb955314042566039871a94d4b
--- /dev/null
+++ b/weights/genshin-impact/hutao-jp/cover.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:f68a5912b78cad2c5f4b37b8ab25389ffc620470d2696c23e92c5adf7ce4cc4c
+size 2637368
diff --git a/weights/genshin-impact/hutao-jp/hutao-jp.pth b/weights/genshin-impact/hutao-jp/hutao-jp.pth
new file mode 100644
index 0000000000000000000000000000000000000000..c5b7f45fdc4b39254f9f2797b7a4499ef3afba38
--- /dev/null
+++ b/weights/genshin-impact/hutao-jp/hutao-jp.pth
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:d87a656e79015a368bd8e02937640dd63fe4af4ba7140cff132102a3092ddf0d
+size 55027130
diff --git a/weights/genshin-impact/kaeya-jp/added_IVF1655_Flat_nprobe_1.index b/weights/genshin-impact/kaeya-jp/added_IVF1655_Flat_nprobe_1.index
new file mode 100644
index 0000000000000000000000000000000000000000..bb6bd1cd3fe27464f5bd63edb5c27817d9602922
--- /dev/null
+++ b/weights/genshin-impact/kaeya-jp/added_IVF1655_Flat_nprobe_1.index
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:1afba8e77f937bf76bd10f54fcbb4ca119dc3b2c599dc4cbf0843d618c26ad15
+size 68325763
diff --git a/weights/genshin-impact/kaeya-jp/cover.png b/weights/genshin-impact/kaeya-jp/cover.png
new file mode 100644
index 0000000000000000000000000000000000000000..db149827664a46b4552b93dac4df82d8d0c2c118
--- /dev/null
+++ b/weights/genshin-impact/kaeya-jp/cover.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:e4b12f3c2ce55d28d8cadcd17464d0922e55aac37495654a7bcfbb03c8beffd5
+size 623087
diff --git a/weights/genshin-impact/kaeya-jp/kaeya-jp.pth b/weights/genshin-impact/kaeya-jp/kaeya-jp.pth
new file mode 100644
index 0000000000000000000000000000000000000000..ede481f507e03d309edfa9afefbf538c01a72f59
--- /dev/null
+++ b/weights/genshin-impact/kaeya-jp/kaeya-jp.pth
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:6492cc522ecaef80436bae3ebdb6e6bd9e6242dc6be74c4e6283c7825285d480
+size 55027130
diff --git a/weights/genshin-impact/keqing-jp/added_IVF1634_Flat_nprobe_1.index b/weights/genshin-impact/keqing-jp/added_IVF1634_Flat_nprobe_1.index
new file mode 100644
index 0000000000000000000000000000000000000000..0ea872cc5dafa0a10aa7a80127ff81ccc944d680
--- /dev/null
+++ b/weights/genshin-impact/keqing-jp/added_IVF1634_Flat_nprobe_1.index
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:9937fc19ea1cfd7ce88478ebb746f7e41522ca9562bc33b81478a61843ae43ae
+size 67465075
diff --git a/weights/genshin-impact/keqing-jp/cover.png b/weights/genshin-impact/keqing-jp/cover.png
new file mode 100644
index 0000000000000000000000000000000000000000..221015d8650b9967ba3ee3b51d7d811359e59a98
--- /dev/null
+++ b/weights/genshin-impact/keqing-jp/cover.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:af5af757312915725a637d3e26af82be378ed2af18cfc2ed498207d7c948b0c3
+size 2106388
diff --git a/weights/genshin-impact/keqing-jp/keqing-jp.pth b/weights/genshin-impact/keqing-jp/keqing-jp.pth
new file mode 100644
index 0000000000000000000000000000000000000000..5a58ae9d1f0f740cdc3e556959d64ca33f9272ef
--- /dev/null
+++ b/weights/genshin-impact/keqing-jp/keqing-jp.pth
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:0b0f2587bd933a2933364224b134fd6bd63cc9434c215f7f94adae46daa0ca90
+size 55027589
diff --git a/weights/genshin-impact/klee-jp/added_IVF1036_Flat_nprobe_1.index b/weights/genshin-impact/klee-jp/added_IVF1036_Flat_nprobe_1.index
new file mode 100644
index 0000000000000000000000000000000000000000..35bdf2089540f6baea506abd7c8e1e26c7285e08
--- /dev/null
+++ b/weights/genshin-impact/klee-jp/added_IVF1036_Flat_nprobe_1.index
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:aea4838e463962216484dcbd42804eb0ef61f59b5a596afa20aae4e37df79b21
+size 42770347
diff --git a/weights/genshin-impact/klee-jp/cover.png b/weights/genshin-impact/klee-jp/cover.png
new file mode 100644
index 0000000000000000000000000000000000000000..c86f742f7e5afbde41a9830ed4d63b4d5715848b
--- /dev/null
+++ b/weights/genshin-impact/klee-jp/cover.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:05945712a7515bd579b09e6b40ec50c4574e5fcb34a0d8814ff901ce624732dd
+size 1000270
diff --git a/weights/genshin-impact/klee-jp/klee-jp.pth b/weights/genshin-impact/klee-jp/klee-jp.pth
new file mode 100644
index 0000000000000000000000000000000000000000..44c9031fdf2e78fd77cf30b08f94ee05b6c2c355
--- /dev/null
+++ b/weights/genshin-impact/klee-jp/klee-jp.pth
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:207e17307ea789211b670d5db1fc5b1072716fa74323557dd70818aac2c878d4
+size 55026095
diff --git a/weights/genshin-impact/kokomi-jp/added_IVF1723_Flat_nprobe_1.index b/weights/genshin-impact/kokomi-jp/added_IVF1723_Flat_nprobe_1.index
new file mode 100644
index 0000000000000000000000000000000000000000..d67370301e7173cc830d0ba0977208928a358dbf
--- /dev/null
+++ b/weights/genshin-impact/kokomi-jp/added_IVF1723_Flat_nprobe_1.index
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:5762d6c5e9d147844b1c6eda0ecd16595b7a33d77607e9d2b729e1dd0a0fc87f
+size 71141059
diff --git a/weights/genshin-impact/kokomi-jp/cover.png b/weights/genshin-impact/kokomi-jp/cover.png
new file mode 100644
index 0000000000000000000000000000000000000000..cbdd9aa1d65606da4d0d013ee7a22752a808cd79
--- /dev/null
+++ b/weights/genshin-impact/kokomi-jp/cover.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:1a6bc15c10db9a01178d73ef4901bcad468649f365289b5ac37d45f63c24e33a
+size 1255959
diff --git a/weights/genshin-impact/kokomi-jp/kokomi-jp.pth b/weights/genshin-impact/kokomi-jp/kokomi-jp.pth
new file mode 100644
index 0000000000000000000000000000000000000000..5fb6249156c2fc3c70da8cc33726c71534edd2bb
--- /dev/null
+++ b/weights/genshin-impact/kokomi-jp/kokomi-jp.pth
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:6bcd3d8988f86503cbec98170cd97da4a0187f9f603385a563ca0dc3d7758ba4
+size 55027589
diff --git a/weights/genshin-impact/model_info.json b/weights/genshin-impact/model_info.json
new file mode 100644
index 0000000000000000000000000000000000000000..41561a9d8f34145efbf294032e51b2ff58fe0554
--- /dev/null
+++ b/weights/genshin-impact/model_info.json
@@ -0,0 +1,138 @@
+{
+ "nilou-jp": {
+ "enable": true,
+ "name": "nilou-jp",
+ "title": "Genshin Impact - Nilou",
+ "cover": "cover.png",
+ "feature_retrieval_library": "added_IVF2384_Flat_nprobe_1.index",
+ "author":"ArkanDash"
+ },
+ "ganyu-jp": {
+ "enable": true,
+ "name": "ganyu-jp",
+ "title": "Genshin Impact - Ganyu",
+ "cover": "cover.png",
+ "feature_retrieval_library": "added_IVF1636_Flat_nprobe_1.index",
+ "author":"ArkanDash"
+ },
+ "eula-jp": {
+ "enable": true,
+ "name": "eula-jp",
+ "title": "Genshin Impact - Eula",
+ "cover": "cover.png",
+ "feature_retrieval_library": "added_IVF2219_Flat_nprobe_1.index",
+ "author":"ArkanDash"
+ },
+ "keqing-jp": {
+ "enable": true,
+ "name": "keqing-jp",
+ "title": "Genshin Impact - Keqing",
+ "cover": "cover.png",
+ "feature_retrieval_library": "added_IVF1634_Flat_nprobe_1.index",
+ "author":"ArkanDash"
+ },
+ "ayaka-jp": {
+ "enable": true,
+ "name": "ayaka-jp",
+ "title": "Genshin Impact - Kamisato Ayaka",
+ "cover": "cover.png",
+ "feature_retrieval_library": "added_IVF2202_Flat_nprobe_1.index",
+ "author":"ArkanDash"
+ },
+ "kokomi-jp": {
+ "enable": true,
+ "name": "kokomi-jp",
+ "title": "Genshin Impact - Sangonomiya Kokomi",
+ "cover": "cover.png",
+ "feature_retrieval_library": "added_IVF1723_Flat_nprobe_1.index",
+ "author":"ArkanDash"
+ },
+ "yelan-jp": {
+ "enable": true,
+ "name": "yelan-jp",
+ "title": "Genshin Impact - Yelan",
+ "cover": "cover.png",
+ "feature_retrieval_library": "added_IVF2051_Flat_nprobe_1.index",
+ "author":"ArkanDash"
+ },
+ "yoimiya-jp": {
+ "enable": true,
+ "name": "yoimiya-jp",
+ "title": "Genshin Impact - Yoimiya",
+ "cover": "cover.png",
+ "feature_retrieval_library": "added_IVF2034_Flat_nprobe_1.index",
+ "author":"ArkanDash"
+ },
+ "yaemiko-jp": {
+ "enable": true,
+ "name": "yaemiko-jp",
+ "title": "Genshin Impact - Yae Miko",
+ "cover": "cover.png",
+ "feature_retrieval_library": "added_IVF2765_Flat_nprobe_1.index",
+ "author":"ArkanDash"
+ },
+ "hutao-jp": {
+ "enable": true,
+ "name": "hutao-jp",
+ "title": "Genshin Impact - Hutao",
+ "cover": "cover.png",
+ "feature_retrieval_library": "added_IVF1662_Flat_nprobe_1.index",
+ "author":"ArkanDash"
+ },
+ "nahida-jp": {
+ "enable": true,
+ "name": "nahida-jp",
+ "title": "Genshin Impact - Nahida",
+ "cover": "cover.png",
+ "feature_retrieval_library": "added_IVF2062_Flat_nprobe_1.index",
+ "author":"ArkanDash"
+ },
+ "klee-jp": {
+ "enable": true,
+ "name": "klee-jp",
+ "title": "Genshin Impact - Klee",
+ "cover": "cover.png",
+ "feature_retrieval_library": "added_IVF1036_Flat_nprobe_1.index",
+ "author":"ArkanDash"
+ },
+ "fischl-jp": {
+ "enable": true,
+ "name": "fischl-jp",
+ "title": "Genshin Impact - Fischl",
+ "cover": "cover.png",
+ "feature_retrieval_library": "added_IVF1225_Flat_nprobe_1.index",
+ "author":"ArkanDash"
+ },
+ "ayato-jp": {
+ "enable": true,
+ "name": "ayato-jp",
+ "title": "Genshin Impact - Kamisato Ayato",
+ "cover": "cover.png",
+ "feature_retrieval_library": "added_IVF1304_Flat_nprobe_1.index",
+ "author":"ArkanDash"
+ },
+ "diluc-jp": {
+ "enable": true,
+ "name": "diluc-jp",
+ "title": "Genshin Impact - Diluc",
+ "cover": "cover.png",
+ "feature_retrieval_library": "added_IVF1511_Flat_nprobe_1.index",
+ "author":"ArkanDash"
+ },
+ "zhongli-jp": {
+ "enable": true,
+ "name": "zhongli-jp",
+ "title": "Genshin Impact - Zhongli",
+ "cover": "cover.png",
+ "feature_retrieval_library": "added_IVF1672_Flat_nprobe_1.index",
+ "author":"ArkanDash"
+ },
+ "kaeya-jp": {
+ "enable": true,
+ "name": "kaeya-jp",
+ "title": "Genshin Impact - Kaeya",
+ "cover": "cover.png",
+ "feature_retrieval_library": "added_IVF1655_Flat_nprobe_1.index",
+ "author":"ArkanDash"
+ }
+}
\ No newline at end of file
diff --git a/weights/genshin-impact/nahida-jp/added_IVF2062_Flat_nprobe_1.index b/weights/genshin-impact/nahida-jp/added_IVF2062_Flat_nprobe_1.index
new file mode 100644
index 0000000000000000000000000000000000000000..a4bdd969dfc81431a75e40098c81f6a2ac18af07
--- /dev/null
+++ b/weights/genshin-impact/nahida-jp/added_IVF2062_Flat_nprobe_1.index
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:77a4b1313f5b4a648de658d12f79841cd76073de82becf95dc72f38ebb764e5b
+size 85120531
diff --git a/weights/genshin-impact/nahida-jp/cover.png b/weights/genshin-impact/nahida-jp/cover.png
new file mode 100644
index 0000000000000000000000000000000000000000..7ac24b0aa8af9d1ab2f752cfbaed5afd89e10866
--- /dev/null
+++ b/weights/genshin-impact/nahida-jp/cover.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:c46a679b99550314f15e6ae88d31489fd38d705812bb6e747de4926b607c2bfc
+size 2364681
diff --git a/weights/genshin-impact/nahida-jp/nahida-jp.pth b/weights/genshin-impact/nahida-jp/nahida-jp.pth
new file mode 100644
index 0000000000000000000000000000000000000000..088e9b95bfd4b31d6cc2ace8e8825f572c0e94af
--- /dev/null
+++ b/weights/genshin-impact/nahida-jp/nahida-jp.pth
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:636cf49be6cac1e510523a4bff9daf90dc54e2a8a76b8fa1216db8f25332e01b
+size 55027589
diff --git a/weights/genshin-impact/nilou-jp/added_IVF2384_Flat_nprobe_1.index b/weights/genshin-impact/nilou-jp/added_IVF2384_Flat_nprobe_1.index
new file mode 100644
index 0000000000000000000000000000000000000000..2c9dd6c9ed103bfdca3b59fbb23d8af92fb7d21a
--- /dev/null
+++ b/weights/genshin-impact/nilou-jp/added_IVF2384_Flat_nprobe_1.index
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:96437f096c1afb1c1de18d5beeedd7d95a688b801687013a5e7e5f5269f49c38
+size 98433331
diff --git a/weights/genshin-impact/nilou-jp/cover.png b/weights/genshin-impact/nilou-jp/cover.png
new file mode 100644
index 0000000000000000000000000000000000000000..0728b46e9b6534897325d336934980096f26b3b1
--- /dev/null
+++ b/weights/genshin-impact/nilou-jp/cover.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:f1b477f9aaa5837e8e979fd41e2e7e6cc52d61937539af69f6fc5c0537f5b524
+size 1601942
diff --git a/weights/genshin-impact/nilou-jp/nilou-jp.pth b/weights/genshin-impact/nilou-jp/nilou-jp.pth
new file mode 100644
index 0000000000000000000000000000000000000000..bdf30e50f862e6463f8689b8ec92af8d22282e27
--- /dev/null
+++ b/weights/genshin-impact/nilou-jp/nilou-jp.pth
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:1e1dc5b3b194586f9af57db6475c1c34678b8a0c03a3535b304118145c254bdc
+size 55027130
diff --git a/weights/genshin-impact/yaemiko-jp/added_IVF2765_Flat_nprobe_1.index b/weights/genshin-impact/yaemiko-jp/added_IVF2765_Flat_nprobe_1.index
new file mode 100644
index 0000000000000000000000000000000000000000..06f9df148262119df978e6c1c557ea2306df80cb
--- /dev/null
+++ b/weights/genshin-impact/yaemiko-jp/added_IVF2765_Flat_nprobe_1.index
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:c5dc974b02f5c03f11120a9f6978ca6c9c1b26d4a640be90a1d4155dc29388e1
+size 114154819
diff --git a/weights/genshin-impact/yaemiko-jp/cover.png b/weights/genshin-impact/yaemiko-jp/cover.png
new file mode 100644
index 0000000000000000000000000000000000000000..41094ca99efbd42d3c0048a24cf598d778d210be
--- /dev/null
+++ b/weights/genshin-impact/yaemiko-jp/cover.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:e2ed8ece589680726edd11a2d3bc5e322481744692412329801be2fefeec30cb
+size 2501123
diff --git a/weights/genshin-impact/yaemiko-jp/yaemiko-jp.pth b/weights/genshin-impact/yaemiko-jp/yaemiko-jp.pth
new file mode 100644
index 0000000000000000000000000000000000000000..52f9adcea745c6ccd19fe95d34444942007ac2ba
--- /dev/null
+++ b/weights/genshin-impact/yaemiko-jp/yaemiko-jp.pth
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:ab229e386220c2383419a29db4c0b896b3a080a049561c19db11eb20bc5518ce
+size 55028048
diff --git a/weights/genshin-impact/yelan-jp/added_IVF2051_Flat_nprobe_1.index b/weights/genshin-impact/yelan-jp/added_IVF2051_Flat_nprobe_1.index
new file mode 100644
index 0000000000000000000000000000000000000000..d15cb9258a7bf4ea824d5df70ecf31a2bca856f5
--- /dev/null
+++ b/weights/genshin-impact/yelan-jp/added_IVF2051_Flat_nprobe_1.index
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:ba725109af57b0c32075582e17571e59ee3a3c33b34b00e13481bd15c0bf0920
+size 84694315
diff --git a/weights/genshin-impact/yelan-jp/cover.png b/weights/genshin-impact/yelan-jp/cover.png
new file mode 100644
index 0000000000000000000000000000000000000000..84c5e0d29602dc83c5e85300bae6e1bd9d66775c
--- /dev/null
+++ b/weights/genshin-impact/yelan-jp/cover.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:415727226e6fd9e15042c69c925848ed80b39701ffe954f35b91d59437d9176f
+size 583602
diff --git a/weights/genshin-impact/yelan-jp/yelan-jp.pth b/weights/genshin-impact/yelan-jp/yelan-jp.pth
new file mode 100644
index 0000000000000000000000000000000000000000..6689d025fe95cfdfe02e41015794d4e3cd2f3cb8
--- /dev/null
+++ b/weights/genshin-impact/yelan-jp/yelan-jp.pth
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:d62ff825db07022e7d380d13c827f27730c99f6d029e8fb8b1d7cd90018d3c49
+size 55027130
diff --git a/weights/genshin-impact/yoimiya-jp/added_IVF2034_Flat_nprobe_1.index b/weights/genshin-impact/yoimiya-jp/added_IVF2034_Flat_nprobe_1.index
new file mode 100644
index 0000000000000000000000000000000000000000..8eb29f4a40f427f9b105738ad7bd71224d51ac0a
--- /dev/null
+++ b/weights/genshin-impact/yoimiya-jp/added_IVF2034_Flat_nprobe_1.index
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:af434a9142b070f7091dcdbbf957b7a01bbc96294add99d186ef1e0d4b226eac
+size 83987395
diff --git a/weights/genshin-impact/yoimiya-jp/cover.png b/weights/genshin-impact/yoimiya-jp/cover.png
new file mode 100644
index 0000000000000000000000000000000000000000..57d43c944455644689ccc58bd26d2794cf1f4674
--- /dev/null
+++ b/weights/genshin-impact/yoimiya-jp/cover.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:d0fa6b1bd9244f896cee3367c5ce4f0e68cff53335ed3bb69bdd2ea57b913a1a
+size 2806221
diff --git a/weights/genshin-impact/yoimiya-jp/yoimiya-jp.pth b/weights/genshin-impact/yoimiya-jp/yoimiya-jp.pth
new file mode 100644
index 0000000000000000000000000000000000000000..84d7a9eb2db180ec681ac8b87c37ef8b352deff3
--- /dev/null
+++ b/weights/genshin-impact/yoimiya-jp/yoimiya-jp.pth
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:896fcee182ecdcea6645a691366ac50153bc63015f43c981da135a8cabe2f088
+size 55028048
diff --git a/weights/genshin-impact/zhongli-jp/added_IVF1672_Flat_nprobe_1.index b/weights/genshin-impact/zhongli-jp/added_IVF1672_Flat_nprobe_1.index
new file mode 100644
index 0000000000000000000000000000000000000000..a59a5bed1cbedad0f946e73e56667658f59ececb
--- /dev/null
+++ b/weights/genshin-impact/zhongli-jp/added_IVF1672_Flat_nprobe_1.index
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:f112d545b6b6ea3063b91d072a745e38541bad2141273b84896102f727cdbe14
+size 69024427
diff --git a/weights/genshin-impact/zhongli-jp/cover.png b/weights/genshin-impact/zhongli-jp/cover.png
new file mode 100644
index 0000000000000000000000000000000000000000..a3eb27010d8baee2279b079a55fffcaa32ba137f
--- /dev/null
+++ b/weights/genshin-impact/zhongli-jp/cover.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:6b2ba0d51052e547052fd14affd7bf74c4dc3c3ee114ca94b45b058b137a2dea
+size 2070002
diff --git a/weights/genshin-impact/zhongli-jp/zhongli-jp.pth b/weights/genshin-impact/zhongli-jp/zhongli-jp.pth
new file mode 100644
index 0000000000000000000000000000000000000000..c3d5b9c9eff9c9540c7a7b6895eb9cfa21e49ff9
--- /dev/null
+++ b/weights/genshin-impact/zhongli-jp/zhongli-jp.pth
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:f31eb1a9446b26cf0893898b75c0a93ed83746cad9fc1f73f0990e7418afc23c
+size 55028048