File size: 3,426 Bytes
a7a6ae1 8bbdb4e 7bcf3d8 8bbdb4e 7bcf3d8 dd8a302 8bbdb4e 7bcf3d8 9e1027a 7bcf3d8 a54f7cf 8bbdb4e 4534e51 7bcf3d8 4534e51 7bcf3d8 3dd668e 7bcf3d8 c7a063d 8bbdb4e 18a581e 219cf1f dda45e5 219cf1f 8bbdb4e 9e1027a 219cf1f acc0e22 3dbfa76 9e1027a 6b67e23 9e1027a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
import gradio as gr
from transformers import pipeline, ViTForImageClassification, ViTImageProcessor
import numpy as np
from PIL import Image
import warnings
import logging
from pytorch_grad_cam import run_dff_on_image, GradCAM
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
from pytorch_grad_cam.utils.image import show_cam_on_image
import torch
from face_grab import FaceGrabber
from gradcam import GradCam
from torchvision import transforms
logging.basicConfig(level=logging.INFO)
model = ViTForImageClassification.from_pretrained("ongkn/attraction-classifier")
processor = ViTImageProcessor.from_pretrained("ongkn/attraction-classifier")
pipe = pipeline("image-classification", model=model, feature_extractor=processor)
faceGrabber = FaceGrabber()
gradCam = GradCam()
targetsForGradCam = [ClassifierOutputTarget(gradCam.category_name_to_index(model, "pos")),
ClassifierOutputTarget(gradCam.category_name_to_index(model, "neg"))]
targetLayerDff = model.vit.layernorm
targetLayerGradCam = model.vit.encoder.layer[-2].output
def classify_image(input):
face = faceGrabber.grab_faces(np.array(input))
if face is None:
return "No face detected", 0, input
face = Image.fromarray(face)
faceResized = face.resize((224, 224))
tensorResized = transforms.ToTensor()(faceResized)
dffImage = run_dff_on_image(model=model,
target_layer=targetLayerDff,
classifier=model.classifier,
img_pil=faceResized,
img_tensor=tensorResized,
reshape_transform=gradCam.reshape_transform_vit_huggingface,
n_components=5,
top_k=10
)
gradCamImage = gradCam.run_grad_cam_on_image(model=model,
target_layer=targetLayerGradCam,
targets_for_gradcam=targetsForGradCam,
input_tensor=tensorResized,
input_image=faceResized,
reshape_transform=gradCam.reshape_transform_vit_huggingface)
result = pipe(face)
if result[0]["label"] == "pos" and result[0]["score"] > 0.9 and result[0]["score"] < 0.95:
return result[0]["label"], result[0]["score"], str("Nice!"), face, dffImage, gradCamImage
elif result[0]["label"] == "pos" and result[0]["score"] > 0.95:
return result[0]["label"], result[0]["score"], str("WHOA!!!!"), face, dffImage, gradCamImage
else:
return result[0]["label"], result[0]["score"], "Indifferent", face, dffImage, gradCamImage
iface = gr.Interface(
fn=classify_image,
inputs="image",
outputs=["text", "number", "text", "image", "image", "image"],
title="Attraction Classifier - subjective",
description=f"Takes in a (224, 224) image and outputs an attraction class: {'pos', 'neg'}, along with a GradCam/DFF explanation. Face detection, cropping, and resizing are done internally. Uploaded images are not stored by us, but may be stored by HF. Refer to their [privacy policy](https://huggingface.co/privacy) for details.\nAssociated post: https://simtoon.ongakken.com/Projects/Personal/Girl+classifier/desc+-+girl+classifier"
)
iface.launch() |