ongkn's picture
Update app.py
feb0188
raw
history blame
2.96 kB
import gradio as gr
from transformers import pipeline, ViTForImageClassification, ViTImageProcessor
import numpy as np
from PIL import Image
import cv2 as cv
import dlib
import logging
from typing import Optional
logging.basicConfig(level=logging.INFO)
def grab_faces(img: np.ndarray) -> Optional[np.ndarray]:
cascades = [
"haarcascade_frontalface_default.xml",
"haarcascade_frontalface_alt.xml",
"haarcascade_frontalface_alt2.xml",
"haarcascade_frontalface_alt_tree.xml"
]
detector = dlib.get_frontal_face_detector() # load face detector
predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks_GTX.dat") # load face predictor
mmod = dlib.cnn_face_detection_model_v1("mmod_human_face_detector.dat") # load face detector
paddingBy = 0.15 # padding by 15%
gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY) # convert to grayscale
detected = None
for cascade in cascades:
cascadeClassifier = cv.CascadeClassifier(cv.data.haarcascades + cascade)
faces = cascadeClassifier.detectMultiScale(gray, scaleFactor=1.5, minNeighbors=5) # detect faces
if len(faces) > 0:
detected = faces[0]
logging.info(f"Face detected by {cascade}")
break
if detected is None:
faces = detector(gray) # detect faces
if len(faces) > 0:
detected = faces[0]
detected = (detected.left(), detected.top(), detected.width(), detected.height())
logging.info("Face detected by dlib")
if detected is None:
faces = mmod(img)
if len(faces) > 0:
detected = faces[0]
detected = (detected.rect.left(), detected.rect.top(), detected.rect.width(), detected.rect.height())
logging.info("Face detected by mmod")
if detected is not None: # if face detected
x, y, w, h = detected # grab first face
padW = int(paddingBy * w) # get padding width
padH = int(paddingBy * h) # get padding height
imgH, imgW, _ = img.shape # get image dims
x = max(0, x - padW)
y = max(0, y - padH)
w = min(imgW - x, w + 2 * padW)
h = min(imgH - y, h + 2 * padH)
x = max(0, x - (w - detected[2]) // 2) # center the face horizontally
y = max(0, y - (h - detected[3]) // 2) # center the face vertically
face = img[y:y+h, x:x+w] # crop face
return face
return None
model = ViTForImageClassification.from_pretrained("ongkn/attraction-classifier")
processor = ViTImageProcessor.from_pretrained("ongkn/attraction-classifier")
pipe = pipeline("image-classification", model=model, feature_extractor=processor)
def classify_image(inp):
face = grab_faces(np.array(inp))
face = Image.fromarray(face)
result = pipe(face)
return result[0]["label"], result[0]["score"]
iface = gr.Interface(fn=classify_image, inputs="image", outputs=["text", "number"])
iface.launch()