|
import gradio as gr |
|
from transformers import pipeline, ViTForImageClassification, ViTImageProcessor |
|
import numpy as np |
|
from PIL import Image |
|
import warnings |
|
import logging |
|
from pytorch_grad_cam import run_dff_on_image, GradCAM |
|
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget |
|
from pytorch_grad_cam.utils.image import show_cam_on_image |
|
import torch |
|
from face_grab import FaceGrabber |
|
from gradcam import GradCam |
|
from torchvision import transforms |
|
|
|
logging.basicConfig(level=logging.INFO) |
|
|
|
|
|
model = ViTForImageClassification.from_pretrained("ongkn/attraction-classifier") |
|
processor = ViTImageProcessor.from_pretrained("ongkn/attraction-classifier") |
|
|
|
faceGrabber = FaceGrabber() |
|
gradCam = GradCam() |
|
|
|
targetsForGradCam = [ClassifierOutputTarget(gradCam.category_name_to_index(model, "pos")), |
|
ClassifierOutputTarget(gradCam.category_name_to_index(model, "neg"))] |
|
targetLayerDff = model.vit.layernorm |
|
targetLayerGradCam = model.vit.encoder.layer[-2].output |
|
|
|
def classify_image(input): |
|
face = faceGrabber.grab_faces(np.array(input)) |
|
if face is None: |
|
return "No face detected", 0, input |
|
face = Image.fromarray(face) |
|
faceResized = face.resize((224, 224)) |
|
tensorResized = transforms.ToTensor()(faceResized) |
|
dffImage = run_dff_on_image(model=model, |
|
target_layer=targetLayerDff, |
|
classifier=model.classifier, |
|
img_pil=faceResized, |
|
img_tensor=tensorResized, |
|
reshape_transform=gradCam.reshape_transform_vit_huggingface, |
|
n_components=5, |
|
top_k=10 |
|
) |
|
result = gradCam.get_top_category(model, tensorResized) |
|
cls = result[0]["label"] |
|
clsIdx = gradCam.category_name_to_index(model, cls) |
|
clsTarget = ClassifierOutputTarget(clsIdx) |
|
gradCamImage = gradCam.run_grad_cam_on_image(model=model, |
|
target_layer=targetLayerGradCam, |
|
targets_for_gradcam=[clsTarget], |
|
input_tensor=tensorResized, |
|
input_image=faceResized, |
|
reshape_transform=gradCam.reshape_transform_vit_huggingface) |
|
if result[0]["label"] == "pos" and result[0]["score"] > 0.9 and result[0]["score"] < 0.95: |
|
return result[0]["label"], result[0]["score"], str("Nice!"), face, dffImage, gradCamImage |
|
elif result[0]["label"] == "pos" and result[0]["score"] > 0.95: |
|
return result[0]["label"], result[0]["score"], str("WHOA!!!!"), face, dffImage, gradCamImage |
|
else: |
|
return result[0]["label"], result[0]["score"], "Indifferent", face, dffImage, gradCamImage |
|
|
|
iface = gr.Interface( |
|
fn=classify_image, |
|
inputs="image", |
|
outputs=["text", "number", "text", "image", "image", "image"], |
|
title="Attraction Classifier - subjective", |
|
description=f"Takes in a (224, 224) image and outputs an attraction class: {'pos', 'neg'}, along with a GradCam/DFF explanation. Face detection, cropping, and resizing are done internally. Uploaded images are not stored by us, but may be stored by HF. Refer to their [privacy policy](https://huggingface.co/privacy) for details.\nAssociated post: https://simtoon.ongakken.com/Projects/Personal/Girl+classifier/desc+-+girl+classifier" |
|
) |
|
|
|
iface.launch() |