|
import logging |
|
import cv2 as cv |
|
import numpy as np |
|
import dlib |
|
from typing import Optional |
|
|
|
logging.basicConfig(level=logging.INFO) |
|
|
|
|
|
class FaceGrabber: |
|
def __init__(self): |
|
self.cascades = [ |
|
"haarcascade_frontalface_default.xml", |
|
"haarcascade_frontalface_alt.xml", |
|
"haarcascade_frontalface_alt2.xml", |
|
"haarcascade_frontalface_alt_tree.xml" |
|
] |
|
self.detector = dlib.get_frontal_face_detector() |
|
self.predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks_GTX.dat") |
|
self.mmod = dlib.cnn_face_detection_model_v1("mmod_human_face_detector.dat") |
|
self.paddingBy = 0.1 |
|
|
|
def grab_faces(self, img: np.ndarray, bGray: bool = False) -> Optional[np.ndarray]: |
|
|
|
if bGray: |
|
img = cv.cvtColor(img, cv.COLOR_BGR2GRAY) |
|
|
|
detected = None |
|
|
|
if detected is None: |
|
faces = self.detector(img) |
|
if len(faces) > 0: |
|
detected = faces[0] |
|
detected = (detected.left(), detected.top(), detected.width(), detected.height()) |
|
logging.info("Face detected by dlib") |
|
|
|
if detected is None: |
|
faces = self.mmod(img) |
|
if len(faces) > 0: |
|
detected = faces[0] |
|
detected = (detected.rect.left(), detected.rect.top(), detected.rect.width(), detected.rect.height()) |
|
logging.info("Face detected by mmod") |
|
|
|
for cascade in self.cascades: |
|
cascadeClassifier = cv.CascadeClassifier(cv.data.haarcascades + cascade) |
|
faces = cascadeClassifier.detectMultiScale(img, scaleFactor=1.5, minNeighbors=5) |
|
if len(faces) > 0: |
|
detected = faces[0] |
|
logging.info(f"Face detected by {cascade}") |
|
break |
|
|
|
if detected is not None: |
|
x, y, w, h = detected |
|
padW = int(self.paddingBy * w) |
|
padH = int(self.paddingBy * h) |
|
imgH, imgW, _ = img.shape |
|
x = max(0, x - padW) |
|
y = max(0, y - padH) |
|
w = min(imgW - x, w + 2 * padW) |
|
h = min(imgH - y, h + 2 * padH) |
|
x = max(0, x - (w - detected[2]) // 2) |
|
y = max(0, y - (h - detected[3]) // 2) |
|
face = img[y:y+h, x:x+w] |
|
return face |
|
|
|
return None |